Red light therapy shown to significantly reduce blood sugar spikes, study finds

In a recent study published in the Journal of Biophotonics, scientists examined whether photobiomodulation of healthy subjects using red light of 670 nm wavelength impacted the circulating glucose levels in the plasma, using oral glucose tolerance tests.

Study: Light stimulation of mitochondria reduces blood glucose levels. Image Credit: AlteredR/Shutterstock.comStudy: Light stimulation of mitochondria reduces blood glucose levels. Image Credit: AlteredR/Shutterstock.com

Background

Mitochondria are the organelles that carry out cellular respiration, using glucose and oxygen to produce adenosine triphosphate or ATP, the energy currency. The ability of the mitochondria to produce ATP reduces naturally with age and due to diseases.

However, studies have found that the production of ATP can be increased through photobiomodulation using light in the visible and near-infrared ranges, between 650 nm and 900 nm.

Photobiomodulation is also known to decrease reactive oxygen species levels, and this ability is believed to be conserved across species in the animal kingdom.

Cytochrome C oxidase, which is part of the electron transport chain in the mitochondrial membrane, absorbs these longer wavelengths of light, increasing the membrane potential and production of ATP.

Research has shown that photobiomodulation has brought about significant increases in regions of the body undergoing high levels of metabolic activity, such as the retina and the central nervous system.

The increased ATP production could also increase the uptake of glucose, which might be evident in changes in the plasma glucose levels.

About the study

In the present study, the researchers used a standard glucose tolerance test to determine whether photobiomodulation using 670 nm light decreased blood glucose levels in healthy human subjects.

The study included 30 healthy participants with no known medical conditions, half of whom underwent photobiomodulation with 670 nm light, and the other half were in the placebo group with no light.

All the participants underwent an oral glucose tolerance test at the onset of the study, where they consumed 75 g of glucose dissolved in 150 mL of water, and finger prick blood samples were used to record the blood glucose levels.

A second oral glucose tolerance test was administered after a week when the participants were administered the placebo or the intervention.

About 45 minutes before the second oral glucose tolerance test was administered, the participants in the intervention group were exposed to 670 nm light for 15 minutes, while those in the placebo group were identically positioned but not exposed to the 670 nm light.

The oral glucose tolerance tests were administered only after ensuring that the participants had fasted overnight.

After consuming glucose dissolved in water, blood glucose concentrations and the end-tidal carbon dioxide (EtCO2) partial pressure were recorded every quarter of an hour for two hours when the participants were at rest.

The 670 nm light exposure was directed at an 800 cm2 region in the upper back, using light-emitting diodes with a shield to prevent light leakage.

The glucose tolerance test results were compared between the participants in the intervention and placebo groups.

Additionally, participants in the intervention group were compared to each other, and similar comparisons were made within the placebo group for paired-participant analysis to account for individual variations.

Results

The results showed that exposure to 670 nm of light over 15 minutes resulted in a 27.7% decrease in glucose levels averaged over two hours.

Additionally, a 7.5% decrease was also observed in maximum glucose spiking within the intervention group, and a 12.1% difference in peak glucose levels was seen between the placebo and intervention groups.

The paired-participant analysis within the placebo group also showed no difference in the blood glucose levels between the two measurements.

The impact of the light exposure was significant after approximately an hour and a half of local light exposure alone. The impact of this local light exposure on plasma glucose levels indicates an abscopal effect, where mitochondria in distal organs are also impacted.

The researchers also discussed the potential mechanisms through which local light exposure could have such widespread impact, including the role of circulating cytokines and cell-free mitochondria in the blood that are competent to conduct cellular respiration.

Conclusions

To summarize, the findings showed that local exposure to 670 nm light for 15 minutes significantly reduced plasma and peak glucose levels.

While these results have proven that longer wavelengths of light have a positive effect on mitochondrial function in healthy humans, the potential use of light exposure in helping regulate blood glucose levels in patients with diabetes needs to be explored.

Journal reference:
Dr. Chinta Sidharthan

Written by

Dr. Chinta Sidharthan

Chinta Sidharthan is a writer based in Bangalore, India. Her academic background is in evolutionary biology and genetics, and she has extensive experience in scientific research, teaching, science writing, and herpetology. Chinta holds a Ph.D. in evolutionary biology from the Indian Institute of Science and is passionate about science education, writing, animals, wildlife, and conservation. For her doctoral research, she explored the origins and diversification of blindsnakes in India, as a part of which she did extensive fieldwork in the jungles of southern India. She has received the Canadian Governor General’s bronze medal and Bangalore University gold medal for academic excellence and published her research in high-impact journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sidharthan, Chinta. (2024, February 23). Red light therapy shown to significantly reduce blood sugar spikes, study finds. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/news/20240223/Red-light-therapy-shown-to-significantly-reduce-blood-sugar-spikes-study-finds.aspx.

  • MLA

    Sidharthan, Chinta. "Red light therapy shown to significantly reduce blood sugar spikes, study finds". News-Medical. 21 November 2024. <https://www.news-medical.net/news/20240223/Red-light-therapy-shown-to-significantly-reduce-blood-sugar-spikes-study-finds.aspx>.

  • Chicago

    Sidharthan, Chinta. "Red light therapy shown to significantly reduce blood sugar spikes, study finds". News-Medical. https://www.news-medical.net/news/20240223/Red-light-therapy-shown-to-significantly-reduce-blood-sugar-spikes-study-finds.aspx. (accessed November 21, 2024).

  • Harvard

    Sidharthan, Chinta. 2024. Red light therapy shown to significantly reduce blood sugar spikes, study finds. News-Medical, viewed 21 November 2024, https://www.news-medical.net/news/20240223/Red-light-therapy-shown-to-significantly-reduce-blood-sugar-spikes-study-finds.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Semaglutide and tirzepatide significantly improve weight loss and glycemic control in type 1 diabetes