New contact lens material could help the eye heal faster

A cross-disciplinary University of Waterloo team has developed a new contact lens material that could act as a bandage for corneal wounds while releasing drugs in a controlled manner to help the eye heal faster.

Typically, corneal abrasion patients spend seven to 10 days wearing a clear, oxygen-permeable bandage contact lens, often instilled with eyedrops containing antibiotics. However, the one-time antibiotic application makes it difficult to ensure enough drugs stay on the eye for sustained treatment. 

It's a targeted-release drug delivery system that is responsive to the body. The more injured you are, the more drug gets delivered, which is unique and potentially a game changer." 

Dr. Lyndon Jones, professor at Waterloo's School of Optometry & Vision Science and director of the Centre for Ocular Research & Education (CORE)

Jones knew there was a market for a drug-delivering bandage contact lens that could simultaneously treat the eye and allow it to heal. The question was how to develop it.

As the University of Waterloo has several researchers and entrepreneurs building technology to disrupt the boundaries of health, Jones was able to team up with Dr. Susmita Bose (PhD'23), Dr. Chau-Minh Phan (PhD'16) and Dr. Evelyn Yim, an associate professor of chemical engineering working on collagen-based materials. Rounding out the team were Dr. Muhammad Rizwan, a former postdoctoral fellow, and John Waylon Tse (MASc'18), a former graduate student, both with Yim's lab.

Collagen is a protein naturally found in the eye that's also often involved in the wound healing process – however, it's too soft and weak to be a contact lens material. Yim found a way to transform gelatin methacrylate, a collagen derivative, into a biomaterial 10 times stronger.

One unique property of collagen-based materials is that they degrade when exposed to an enzyme called matrix metalloproteinase-9 (MMP-9), which is naturally found in the eye. 

"These enzymes are very special because they're involved in wound healing, and when you have a wound, they're released in greater quantity," Phan said. "If you have a material that can be degraded in the presence of this enzyme, and we add a drug to this material, we can engineer it so it releases the drug in a way that is proportional to the amount of enzymes present at the wound. So, the bigger the wound, the higher the amount of drug released."

The team used bovine lactoferrin as a model wound-healing drug and entrapped it in the material. In human cell culture study, the researchers achieved complete wound healing within five days using the drug-releasing novel contact lens material.

Another benefit of the material is that it only becomes activated at eye temperatures, providing an inbuilt storage mechanism.

The next step is fine-tuning the material, including entrapping different drugs in it. 

The scientists believe their material has great potential – not only for the eye but potentially for other body sites, especially large skin ulcers.

A study outlining the researchers' work was recently published in the journal Pharmaceutics

Source:
Journal reference:

Bose, S., et al. (2023). Fabrication and Characterization of an Enzyme-Triggered, Therapeutic-Releasing Hydrogel Bandage Contact Lens Material. Pharmaceutics. doi.org/10.3390/pharmaceutics16010026

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Global analysis highlights antibiotic consumption trends and AMR threat