New brain connectivity maps offer insights into human consciousness

In a paper titled, "Multimodal MRI reveals brainstem connections that sustain wakefulness in human consciousness," published today in Science Translational Medicine, a group of researchers at Massachusetts General Hospital, a founding member of the Mass General Brigham healthcare system, and Boston Children's Hospital, created a connectivity map of a brain network that they propose is critical to human consciousness.

The study involved high-resolution scans that enabled the researchers to visualize brain connections at submillimeter spatial resolution. This technical advance allowed them to identify previously unseen pathways connecting the brainstem, thalamus, hypothalamus, basal forebrain, and cerebral cortex. 

Together, these pathways form a "default ascending arousal network" that sustains wakefulness in the resting, conscious human brain. The concept of a "default" network is based on the idea that specific networks within the brain are most functionally active when the brain is in a resting state of consciousness. In contrast, other networks are more active when the brain is performing goal-directed tasks. 

To investigate the functional properties of this default brain network, the researchers analyzed 7 Tesla resting-state functional MRI data from the Human Connectome Project. These analyses revealed functional connections between the subcortical default ascending arousal network and the cortical default mode network that contributes to self-awareness in the resting, conscious brain.

The complementary structural and functional connectivity maps provide a neuroanatomic basis for integrating arousal and awareness in human consciousness. The researchers released the MRI data, brain mapping methods, and a new Harvard Ascending Arousal Network Atlas, to support future efforts to map the connectivity of human consciousness.

"Our goal was to map a human brain network that is critical to consciousness and to provide clinicians with better tools to detect, predict, and promote recovery of consciousness in patients with severe brain injuries," explains lead-author Brian Edlow, MD, co-director of Mass General Neuroscience, associate director of the Center for Neurotechnology and Neurorecovery (CNTR) at Mass General, an associate professor of Neurology at Harvard Medical School and a Chen Institute MGH Research Scholar 2023-2028.

Our connectivity results suggest that stimulation of the ventral tegmental area's dopaminergic pathways has the potential to help patients recover from coma because this hub node is connected to many regions of the brain that are critical to consciousness."

Brian Edlow, MD, lead author

Senior author Hannah Kinney, MD, Professor Emerita at Boston Children's Hospital and Harvard Medical School, adds that "the human brain connections that we identified can be used as a roadmap to better understand a broad range of neurological disorders associated with altered consciousness, from coma, to seizures, to sudden infant death syndrome (SIDS)."

The authors are currently conducting clinical trials to stimulate the default ascending arousal network in patients with coma after traumatic brain injury, with the goal of reactivating the network and restoring consciousness. 

Source:
Journal reference:

Edlow, B. L., et al. (2024) Multimodal MRI reveals brainstem connections that sustain wakefulness in human consciousness. Science Translational Medicine. doi.org/10.1126/scitranslmed.adj4303.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Small brain-penetrating molecule offers hope for treating aggressive brain tumors