New challenges in cancer care: cardiovascular disease and environmental factors

A recent study published in JAAC CardioOncology reviewed preclinical and epidemiologic evidence linking air pollution to cardio-oncology.

Study: Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. Image Credit: Inside Creative House/Shutterstock.comStudy: Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. Image Credit: Inside Creative House/Shutterstock.com

Background

Cancer therapies have substantially improved the survival rate of patients. However, chronic health conditions have emerged as the lifespan of cancer patients increased.

Cardio-oncology refers to the research and clinical practice of predicting, preventing, and treating cardiotoxicity due to cancer therapy. Over time, cardio-oncology has expanded and includes multifaceted and bidirectional links between cancer and cardiovascular disease (CVD).

Air pollution has emerged as an environmental risk factor for cancer and CVD. Air pollution has been implicated in oxidative stress, immune response, and metabolic remodeling, which may amplify the effects of risk factors.

Although air pollution is a recognized risk factor for CVD and cancer, its role within cardio-oncology has received little attention. The present study reviewed the evidence linking cancer and CVD, emphasizing the effects of air pollution on cardio-oncology.

Air pollution, cancer, and CVD

Exposure to particulate matter ≤ 2.5 (PM2.5) has been associated with atherosclerosis, hypertension, stroke, and heart attack. Air pollution is also associated with cancer, especially lung cancer. The Global Burden of Disease study revealed that PM pollutants contributed to more than 15% of global lung cancer deaths.

The prevalence of coexisting cancer and CVD has surged with the increasing number of cancer survivors. Studies have indicated a higher risk of CVD in cancer patients and of cancer in those with heart failure. The authors identified eight studies through a literature search that examined the effects of air pollution on cancer in CVD cohorts and CVD in cancer cohorts.

Three studies indicated that higher cardiopulmonary and CVD mortality was attributable to PM2.5 exposure. Two studies also reported higher CVD incidence associated with PM2.5 and PM10, especially in breast cancer.

Finally, three studies revealed significant associations between NOx and the incidence of traffic-related air pollution (TRAP)-related cancers among CVD patients.

Effects of air pollution on cancer and CVD risk factors

The relationship between air pollution and the risk of obesity has been explored across life stages. In a randomized controlled trial, children aged 23 months whose mothers used high-efficiency particulate air (HEPA) filters had a slight decrease in body mass index (BMI).

Further, a Spanish study observed that prenatal and postnatal exposure to PM2.5, PM10, and NO2 was associated with modest BMI changes during the first five years of life.

A cross-sectional study involving children aged 6–17 found that obesity incidence increased by 10% per 10 ug/m3 increment in PM2.5. A systematic review found that the risk of diabetes increased by 8% to 10% with every 10 ug/m3 increment in PM2.5.

Gestational exposure to air pollution is associated with a higher risk of gestational diabetes; it is also associated with increased diabetes risk in the offspring.

Further, short- or long-term PM2.5 exposure has been linked to hypertension. A study showed that increased PM2.5 exposure increased the transition from prehypertension to hypertension, CVD, and death. Exposure to air pollution may accelerate progression to atherosclerosis.

Several studies have reported positive associations between exposure to PM2.5 and low-density lipoprotein (LDL) cholesterol levels.

Shared genetic and molecular pathways

Oxidative stress and inflammation exhibit a cause-and-effect relationship and interact with other factors, exerting carcinogenic and cardiovascular effects.

Multiple air pollutants can breach the respiratory tract barrier, deposit in the alveoli, initiate systemic effects, local inflammation, and oxidative stress, and contribute to oxidative injury and inflammatory dysregulation, leading to cardiovascular damage and cancer predisposition.

Inflammation and reactive oxygen species are critical in tumor growth and metastasis. Polycyclic aromatic hydrocarbons, the main organic constituents of PM2.5, have been implicated in lung cancer. PM2.5 comprises some types of carcinogens and mutagens that form DNA adducts.

This may lead to gene instability, transcriptional changes, and epigenetic modifications. PM2.5 exposure has been shown to induce dose-dependent changes in DNA damage-related gene expression.

Concluding remarks

Overall, the health impact of air pollution varies among individuals and across geographic regions, leading to diverse consequences. While evidence reveals links between air pollution and cardio-oncology, several gaps and limitations remain.

Variations in residential history and time-activity patterns may result in data inaccuracies related to air pollution exposure. Large-scale studies are needed to evaluate the carcinogenic effects of air pollution.

Journal reference:
Tarun Sai Lomte

Written by

Tarun Sai Lomte

Tarun is a writer based in Hyderabad, India. He has a Master’s degree in Biotechnology from the University of Hyderabad and is enthusiastic about scientific research. He enjoys reading research papers and literature reviews and is passionate about writing.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sai Lomte, Tarun. (2024, June 21). New challenges in cancer care: cardiovascular disease and environmental factors. News-Medical. Retrieved on December 22, 2024 from https://www.news-medical.net/news/20240621/New-challenges-in-cancer-care-cardiovascular-disease-and-environmental-factors.aspx.

  • MLA

    Sai Lomte, Tarun. "New challenges in cancer care: cardiovascular disease and environmental factors". News-Medical. 22 December 2024. <https://www.news-medical.net/news/20240621/New-challenges-in-cancer-care-cardiovascular-disease-and-environmental-factors.aspx>.

  • Chicago

    Sai Lomte, Tarun. "New challenges in cancer care: cardiovascular disease and environmental factors". News-Medical. https://www.news-medical.net/news/20240621/New-challenges-in-cancer-care-cardiovascular-disease-and-environmental-factors.aspx. (accessed December 22, 2024).

  • Harvard

    Sai Lomte, Tarun. 2024. New challenges in cancer care: cardiovascular disease and environmental factors. News-Medical, viewed 22 December 2024, https://www.news-medical.net/news/20240621/New-challenges-in-cancer-care-cardiovascular-disease-and-environmental-factors.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer