Commercial tattoo and permanent makeup inks can harbor anaerobic bacteria

Researchers have detected anaerobic and aerobic bacteria in commercial tattoo and permanent makeup inks. The findings, reported in Applied and Environmental Microbiology, a journal of the American Society for Microbiology, demonstrate that the inks could be a source of human infections. The new study is particularly notable as it is the first to investigate the presence of anaerobic bacteria in commercial tattoo inks. 

Our findings reveal that unopened and sealed tattoo inks can harbor anaerobic bacteria, known to thrive in low-oxygen environments like the dermal layer of the skin, alongside aerobic bacteria. This suggests that contaminated tattoo inks could be a source of infection from both types of bacteria. The results emphasize the importance of monitoring these products for both aerobic and anaerobic bacteria, including possibly pathogenic microorganisms." 

Seong-Jae (Peter) Kim, Ph.D., corresponding author, microbiologist with the Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Ark.

The main goal of the new study was to assess the prevalence of both aerobic and anaerobic microbial contaminants in tattoo inks available on the U.S. market. For the detection of aerobic bacteria, the researchers mixed 1 to 2 grams of tattoo ink solution with appropriate media and incubated them in a standard incubator, and to detect anaerobic bacteria, they mixed the ink solution with appropriate media and incubated them in an anaerobic chamber, a device specifically designed to cultivate anaerobes. This chamber is kept oxygen-free by constant flushing with a mix of gases such as nitrogen, carbon dioxide and hydrogen. The researchers conducted this procedure for a total of 75 tattoo inks from 14 different manufacturers. 

The investigators discovered that around 35% of tattoo or permanent makeup inks sold in the U.S. were found to be contaminated with bacteria. "Both types of bacteria, those needing oxygen (aerobic) and those not needing oxygen (anaerobic), can contaminate the inks," Kim said. "There was no clear link between a product label claiming sterility and the actual absence of bacterial contamination."

"The rising popularity of tattooing in recent years has coincided with an increase in tattoo-related complications or adverse reactions," Kim said. "It should be noted that microbial infections constitute just one aspect of these complications. In addition to microbial infections, immunologic complications such as inflammatory reactions and allergic hypersensitivity, as well as toxic responses, represent a significant portion of these issues. In light of our study results, we want to emphasize the importance of continuously monitoring these products to ensure the microbial safety of tattoo inks."

Kim and his colleagues will move their research forward in 2 key directions. They will develop more efficient microbial detection methods for tattoo inks, making the process quicker, more accurate and less labor-intensive. They will also conduct systematic research to deepen the understanding of microbial contamination in tattoo and permanent makeup inks. This will include studying the occurrence, co-occurrence and diversity of microbial contaminants, which is essential for preventing contamination in these products.

Source:
Journal reference:

Yoon, S., et al. (2024). Detection of anaerobic and aerobic bacteria from commercial tattoo and permanent makeup inks. Applied and Environmental Microbiology. doi.org/10.1128/aem.00276-24.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers decode MRSA biofilm structure to combat antibiotic resistance