Scientists unveil KLF15 transcription factor's role in white fat cells, opening new paths for obesity therapy

In a recent preclinical study published in the Journal of Clinical Investigation, researchers in the United States of America investigated the role of the transcription factor KLF15 (short for Kruppel-like factor 15) in maintaining white adipocyte properties in subcutaneous white adipose tissue (WAT) in mouse models and primary human adipose cells. They found that deleting Klf15 induces beige adipocyte properties in WAT and may affect systemic metabolism, thereby opening new avenues for treating obesity.

Study: White adipocytes in subcutaneous fat depots require KLF15 for maintenance in preclinical modelsStudy: White adipocytes in subcutaneous fat depots require KLF15 for maintenance in preclinical models

Background

Adipocytes, key cells in mature adipose tissue, play roles in energy homeostasis and produce various paracrine and endocrine signals. Different adipose tissue depots have unique developmental and metabolic influences. Brown adipose tissue (BAT) and WAT differ significantly. While WAT matures after birth, BAT is present at birth, aiding the development of heat through β-adrenergic signaling, especially in response to cold. BAT's energy-burning capacity has the potential to treat obesity, but humans have limited BAT, which decreases with age.

Interestingly, subcutaneous WAT contains heterogeneous adipocytes, including white and 'beige' adipocytes, which share features with brown adipocytes. The origin of beige adipocytes remains unclear. Additionally, the factors maintaining white adipocyte properties are poorly understood. Understanding the depot-specific nature and context of these factors could reveal targets for obesity treatments.

KLF15 is a zinc finger transcription factor linked to lipid storage, adipogenesis, and BAT regulation. KLF dysregulation is reported to be associated with diseases like obesity and diabetes, highlighting the need for further research on KLFs' role in adipose tissue. Therefore, in the present preclinical study, researchers investigated the potential role of KL15 in maintaining white adipocyte properties, particularly in subcutaneous WAT depots.

About the study

In the present study, researchers examined Klf15 expression levels in three major types of adipose tissue: visceral, subcutaneous, and intracapsular brown, using wild-type mice. They also tested the impact of β-adrenergic stimulation on Klf15 expression. Additionally, they compared the expression levels of the three different adrenergic receptor family members (ADRB 1-3) across the adipose types and in human white and brown adipocytes. A Klf15-floxed mouse line was developed using CRISPR/Cas9 (short for Clustered regularly interspaced short palindromic repeats and associated protein 9) technology. Gene and protein expression analyses were conducted using qPCR (short for quantitative polymerase chain reaction), Western blot, and immunoblotting. Klf15-floxed mice were crossed with Adipoq-Cre mice to selectively delete Klf15 in mature adipocytes, generating Adipo-Klf15–cKO mice. Another mouse line, Prx1-Klf15 cKO, was generated by crossing Klf15-floxed mice with Prx1-Cre mice, targeting adipocyte progenitor cells in the iWAT depot. Functional assays included measuring oxygen consumption rates (OCR) and energy expenditure in response to adrenergic agonists using metabolic cages and Seahorse analyzers. Additionally, primary human subcutaneous adipocytes were used to test the conservation of KLF15 function, with Klf15 knockdown achieved through adenoviral infection.

Results and discussion

Klf15 expression was found to be approximately 75% lower in BAT compared to WAT, suggesting a physiological role for this difference. β-adrenergic stimulation in vivo resulted in the downregulation of Klf15 expression in WAT by about 50%. Among the adrenergic receptors, Adrb1 was the most differentially expressed in BAT compared to WAT, and a similar pattern was observed in human adipocytes. Overexpression of Adrb1 in white adipocytes was found to alter white adipocytes even in the presence of other adrenergic receptors.

Deletion of Klf15 in white adipocytes induced the expression of genes critical to brown fat identity and function, such as uncoupling protein 1 (Ucp1). This deletion also led to the upregulation of Adrb1, with other adrenergic receptors being unaffected or downregulated. The levels of β1AR increased with Klf15 deletion, suggesting that KLF15 modulates the maintenance of white adipocytes and "beiging" in subcutaneous WAT. In vivo, Adipo-Klf15–cKO mice exhibited a browner subcutaneous WAT with reduced mass and higher expression of brown fat genes, particularly in mature adipocytes isolated from the subcutaneous WAT, without changes in visceral WAT or BAT. The Prx1-Klf15 cKO mice showed reduced subcutaneous WAT mass, browner appearance, smaller adipocytes, and increased expression of brown fat marker genes. In vivo studies showed higher energy expenditure and better cold tolerance in Prx1-Klf15 cKO mice. Functional assays revealed that subcutaneous WAT with Klf15 deletion had enhanced OCRs in response to adrenergic stimulation, indicating increased adrenergic sensitivity. In human white adipocytes, the knockdown of KLF15 also resulted in increased Adrb1 and UCP1 expression, enhanced OCRs, and increased sensitivity to adrenergic stimulation.

Conclusion

In conclusion, these findings suggest that KLF15 modulates adipocyte sensitivity to β-adrenergic stimulation and is essential to maintaining white adipocyte properties in subcutaneous WAT. Targeting KLF15 could promote energy utilization through an alternative adrenergic pathway in white adipocytes. These discoveries enhance our understanding of adipose biology and the plasticity of mature white adipocytes. They also reveal previously unrecognized pathways that could potentially be more relevant and effective therapeutic targets against obesity in humans.

Journal reference:
  • White adipocytes in subcutaneous fat depots require KLF15 for maintenance in preclinical models. Liang Li et al., Journal of Clinical Investigation,134(13):e172360 (2024), DOI: 10.1172/JCI172360, https://www.jci.org/articles/view/172360
Dr. Sushama R. Chaphalkar

Written by

Dr. Sushama R. Chaphalkar

Dr. Sushama R. Chaphalkar is a senior researcher and academician based in Pune, India. She holds a PhD in Microbiology and comes with vast experience in research and education in Biotechnology. In her illustrious career spanning three decades and a half, she held prominent leadership positions in academia and industry. As the Founder-Director of a renowned Biotechnology institute, she worked extensively on high-end research projects of industrial significance, fostering a stronger bond between industry and academia.  

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chaphalkar, Sushama R.. (2024, July 04). Scientists unveil KLF15 transcription factor's role in white fat cells, opening new paths for obesity therapy. News-Medical. Retrieved on January 14, 2025 from https://www.news-medical.net/news/20240704/Scientists-unveil-KLF15-transcription-factors-role-in-white-fat-cells-opening-new-paths-for-obesity-therapy.aspx.

  • MLA

    Chaphalkar, Sushama R.. "Scientists unveil KLF15 transcription factor's role in white fat cells, opening new paths for obesity therapy". News-Medical. 14 January 2025. <https://www.news-medical.net/news/20240704/Scientists-unveil-KLF15-transcription-factors-role-in-white-fat-cells-opening-new-paths-for-obesity-therapy.aspx>.

  • Chicago

    Chaphalkar, Sushama R.. "Scientists unveil KLF15 transcription factor's role in white fat cells, opening new paths for obesity therapy". News-Medical. https://www.news-medical.net/news/20240704/Scientists-unveil-KLF15-transcription-factors-role-in-white-fat-cells-opening-new-paths-for-obesity-therapy.aspx. (accessed January 14, 2025).

  • Harvard

    Chaphalkar, Sushama R.. 2024. Scientists unveil KLF15 transcription factor's role in white fat cells, opening new paths for obesity therapy. News-Medical, viewed 14 January 2025, https://www.news-medical.net/news/20240704/Scientists-unveil-KLF15-transcription-factors-role-in-white-fat-cells-opening-new-paths-for-obesity-therapy.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Obesity at cancer diagnosis linked to higher risk of death in children