Innovative tissue slicing method for improved clinical outcomes

In a pioneering development for the biomedical field, a research team led by Yuanjin Zhao from Nanjing Drum Tower Hospital, China, has published a research article in Engineering. The article, titled "Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots," introduces a novel technique for tissue slicing and cultivation that could revolutionize the way primary tissues are handled in clinical settings.

The in vitro cultivation of patient-derived tissues is crucial for accurate diagnosis, precision medication, individualized therapy, and tissue engineering. However, current tissue slicing and cultivation techniques often fall short of clinical requirements. The research team's innovative approach addresses these challenges by introducing a controllable histotomy strategy that utilizes hierarchical magnetic microneedle array robots.

This strategy involves a three-dimensionally printed, mortise-tenon-structured slicing device, coupled with a magnetic-particle-loaded and pagoda-shaped microneedle array scaffold. The multilayered structure of the microneedles allows for the effective fixation of tissue specimens, avoiding tissue slipping during the slicing process. Moreover, the encapsulated magnetic microneedle fragments enable the tissue pieces to act as magnetically responsive biohybrid microrobots, facilitating their separation, transportation, and dynamic culture through magnetic fields.

The team demonstrated the technique's efficacy by tailoring primary pancreatic cancer tissues into tiny pieces and culturing them in multilayered microfluidic chips for high-throughput drug screening. The results indicate the promising future of this technique in clinical settings, offering a significant step forward in the precision medicine landscape.

The development of this controllable histotomy technique marks a significant advancement in the field of tissue engineering and drug screening. By leveraging the capabilities of magnetic microneedle array robots, researchers have been able to create a more efficient and precise method for tissue manipulation and analysis.

Jiaming Wu, Editor, Engineering

The research article also discusses the potential for further improvements to the technique, such as automating the horizontal sectioning and production of tissue cubes and scaling up the microtomy device for higher throughput. Additionally, the team envisions the application of this technology beyond cancer research, to other types of patient-derived primary tissues, and its potential for long-term tissue cultivation and observation.

The innovative work by Yuanjin Zhao's team not only pushes the boundaries of current tissue analysis techniques but also opens up new possibilities for personalized medicine and the development of more effective treatments. As the technology matures, it is expected to play a pivotal role in the advancement of biomedical research and clinical applications.

Source:
Journal reference:

Zhang, X., et al. (2024). Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots. Engineering. doi.org/10.1016/j.eng.2024.05.004

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Garlic’s antioxidant and nitric oxide boosting effects may help lower blood pressure