Artificial intelligence predicts tongue disease with 96 percent accuracy

In a recent study published in Technologies, researchers devised a novel system that uses machine learning to predict tongue disease.

​​​​​​​Study: Tongue Disease Prediction Based on Machine Learning Algorithms. Image Credit: fizkes/Shutterstock.com​​​​​​​Study: Tongue Disease Prediction Based on Machine Learning Algorithms. Image Credit: fizkes/Shutterstock.com

Background

Traditional tongue illness diagnosis relies on monitoring tongue features such as color, shape, texture, and wetness, which reveal the health state.

Traditional Chinese medicine (TCM) practitioners rely on subjective assessments of tongue characteristics, which leads to subjectivity in diagnosis and replication issues. The rise of artificial intelligence (AI) has created a strong demand for breakthroughs in tongue diagnostic technologies.

Automated tongue color analysis systems have demonstrated high accuracy in identifying healthy and ill individuals and diagnosing various disorders. Artificial intelligence has tremendously advanced in capturing, analyzing, and categorizing tongue images.

The convergence of artificial intelligence approaches in tongue diagnostic research intends to increase reliability and accuracy while addressing the long-term prospects for large-scale AI applications in healthcare.

About the study

The present study proposes a novel, machine learning-based imaging system to analyze and extract tongue color features at different color saturations and under various light conditions for real-time tongue color analysis and disease prediction.

The imaging system trained tongue images classified by color using six machine-learning algorithms to predict tongue color. The algorithms included support vector machines (SVM), naive Bayes (NB), decision trees (DTs), k-nearest neighbors (KNN), Extreme Gradient Boost (XGBoost), and random forest (RF) classifiers.

The color models were as follows: the Human Visual System (HSV), the red, green, and blue system (RGB), luminance separation from chrominance (YCbCr, YIQ), and lightness with green-red and blue-yellow axes (LAB). 

Researchers divided the data into the training (80%) and testing (20%) datasets. The training dataset comprised 5,260 images classified as yellow (n=1,010), red (n=1,102), blue (n=1,024), green (n=945), pink (n=310), white (n=300), and gray (n=737) for different light conditions and saturations.

The second group included 60 pathological tongue images from the Mosul General Hospital of Mosul and Al-Hussein Hospital of Iraq, encompassing individuals with various conditions such as diabetes, asthma, mycotic infection, kidney failure, COVID-19, anemia, and fungiform papillae.

Patients sat in front of the camera at a 20cm distance while the machine learning algorithm recognized the color of their tongues and predicted their health status in real-time.

Researchers used laptops with the MATLAB App Designer program installed and webcams with 1,920 x 1,080 pixels resolution to extract tongue color and features. Image analysis included segmenting the central region of the tongue image and eliminating the mustache, beard, lips, and teeth for analysis.

After image analysis, the system converted the RGB space to HVS, YCbCr, YIQ, and LAB models. After color classification, the intensities from different color channels were fed to various machine learning algorithms to train the imaging model.

Performance evaluation metrics included precision, accuracy, recall, Jaccard index, F1-scores, G-scores, zero-one losses, Cohen’s kappa, Hamming loss, Fowlkes-Mallow index, and the Matthews correlation coefficient (MCC).

Results

The findings indicated that XGBoost was the most accurate (98.7%), while the Na<0xC3><0xAF>ve Bayes technique had the lowest accuracy (91%). For XGBoost, F1 scores of 98% denoted an outstanding balance between recall and precision.

The 0.99 Jaccard index with 0.01 zero-one losses, 0.92 G-score, 0.01 Hamming loss, 1.0 Cohen's kappa, 0.4 MCC, and 0.98 Fowlkes-Mallow index suggested nearly perfect positive correlations, suggesting that XGBoost is highly reliable and effective for tongue analysis. XGBoost ranked first in precision, accuracy, F1 score, recall, and MCC.

Based on these findings, the researchers used XGBoost as the algorithm for the suggested tongue imaging tool, which is linked to a graphical user interface and predicts tongue color and associated disorders in real time.

The imaging system yielded positive results upon deployment. The machine learning-based system accurately detected 58 of 60 tongue images with 96.6% detection accuracy.

A pink-colored tongue indicates good health, but other hues signify illness. Patients with yellow tongues were categorized as diabetic, whereas those with green tongues were diagnosed with mycotic diseases.

A blue tongue suggested asthma; a red-colored tongue indicated coronavirus disease 2019 (COVID-19); a black tongue indicated fungiform papillae presence; and a white tongue indicated anemia.

Conclusions

Overall, the real-time imaging system using XGBoost yielded positive results upon deployment with 96.6% diagnostic accuracy. These findings support the practicality of artificial intelligence systems for tongue detection in medical applications, demonstrating that this method is secure, efficient, user-friendly, pleasant, and cost-effective.

Camera reflections might cause differences in observed colors, affecting diagnosis. Future studies should consider camera reflections and use powerful image processors, filters, and deep-learning approaches to increase accuracy. This method paves the way for extended tongue diagnostics in future point-of-care health systems.

Journal reference:
Pooja Toshniwal Paharia

Written by

Pooja Toshniwal Paharia

Pooja Toshniwal Paharia is an oral and maxillofacial physician and radiologist based in Pune, India. Her academic background is in Oral Medicine and Radiology. She has extensive experience in research and evidence-based clinical-radiological diagnosis and management of oral lesions and conditions and associated maxillofacial disorders.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Toshniwal Paharia, Pooja Toshniwal Paharia. (2024, August 15). Artificial intelligence predicts tongue disease with 96 percent accuracy. News-Medical. Retrieved on January 24, 2025 from https://www.news-medical.net/news/20240815/Artificial-intelligence-predicts-tongue-disease-with-96-percent-accuracy.aspx.

  • MLA

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Artificial intelligence predicts tongue disease with 96 percent accuracy". News-Medical. 24 January 2025. <https://www.news-medical.net/news/20240815/Artificial-intelligence-predicts-tongue-disease-with-96-percent-accuracy.aspx>.

  • Chicago

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Artificial intelligence predicts tongue disease with 96 percent accuracy". News-Medical. https://www.news-medical.net/news/20240815/Artificial-intelligence-predicts-tongue-disease-with-96-percent-accuracy.aspx. (accessed January 24, 2025).

  • Harvard

    Toshniwal Paharia, Pooja Toshniwal Paharia. 2024. Artificial intelligence predicts tongue disease with 96 percent accuracy. News-Medical, viewed 24 January 2025, https://www.news-medical.net/news/20240815/Artificial-intelligence-predicts-tongue-disease-with-96-percent-accuracy.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Advancements in reinforcement learning for personalized patient care