Understanding the health benefits of polyphenols through bitter taste receptors

Bioactive compounds like polyphenols and their health benefits have long captured public attention and interest. Commonly present in plant-based food like fruits, vegetables, seeds, coffee, and tea, the polyphenols have a strong bitter taste and, in the normal course, is excreted by our body due to poor absorption.

The polyphenols interact with human bitter taste receptors also known as Type 2 taste receptors (T2R) expressed within and outside the oral cavity. Notably, the activation of T2R expressed along the gastrointestinal (GI) tract is responsible for the bioactivity of ingested polyphenols. The scientific mechanisms beyond T2R activation leading up to the reported health benefits of polyphenols are unclear. With over 8,000 types of polyphenols and 25 types of human T2R, this is a crucial gap in knowledge.

With a focus to fill in this gap, a team of researchers led by Professor Naomi Osakabe from Shibaura Institute of Technology, Japan, along with Dr. Makoto Ohmoto from the Takasaki University of Health and Welfare, Japan, Dr. Yasuyuki Fujii and Dr. Takafumi Shimizu from Shibaura Institute of Technology, Japan, and Dr. Keiko Abe from University of Tokyo, Japan, and Dr. Vittorio Calabrese from University of Catania, Italy, conducted a review to understand the interaction between the polyphenols and T2R and the resulting health benefits. Their findings were published on 18 June 2024 in the journal of Food Bioscience.

Professor Osakabe asserts, "Despite their poor absorption, there are reports that polyphenols improve glucose tolerance. We are investigating the relationship between polyphenol intake and the risk of type II diabetes, as the mechanism of this beneficial effect is still unknown."

The review highlights the mechanism of communication between the polyphenols, T2Rs, and the brain centers regulating glucose homeostasis and appetite. Polyphenol-mediated binding and activation of T2R in the GI tract promotes secretion of GI hormones such as cholecystokinin (CCK) and incretins. The incretins include the glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) that trigger insulin secretion and regulate blood glucose homeostasis. CCK and GLP-1 regulate appetite and food intake by influencing GI motility. Together, the GI hormones triggered by polyphenols reduce the risk of obesity and diabetes.

Prof Osakabe explains, "The GI hormones are known to regulate feeding behavior and maintain glucose tolerance via the endocrine and nervous systems, thus it is possible that the bitterness of polyphenols helps to reduce the risk of diabetes and its complications, through T2R activation."

Overall, the findings suggest that ingested polyphenols, despite remaining unabsorbed, promote the secretion of gastrointestinal hormones by activating bitter taste receptors expressed on the digestive secretory cells, thereby regulating blood sugar levels and appetite. Prof. Osakabe concludes, "Our study highlights the importance of consumption of polyphenols to reduce obesity and diabetes risk through regulation of blood sugar levels and appetite."

Source:
Journal reference:

Osakabe, N., et al. (2024). Gastrointestinal hormone-mediated beneficial bioactivities of bitter polyphenols. Food Biosciencedoi.org/10.1016/j.fbio.2024.104550.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds microplastics in blood clots, linking them to higher risk of heart attacks and strokes