New cell model reveals how hepatitis E viruses affect nerve cells

Using a new cell model, researchers can for the first time study how hepatitis E viruses affect nerve cells.

Hepatitis E viruses (HEV) typically cause liver infections. They can, however, also infect other organs and cause neurological disorders. Little is yet known about how this process works. In a first, a research team headed by Michelle Jagst and Professor Eike Steinmann from the Department of Molecular and Medical Virology at Ruhr University Bochum, Germany, in collaboration with Dr. Barbara Gisevius' research group at Professor Ralf Gold's Research Department of Neuroscience, has developed a cell model to study the interaction of the virus with nerve cells. Using this model, the researchers proved that the virus can infect the cells directly and that the cells can't protect themselves against it through an immune response. The researchers published their findings in the journal Proceedings of the National Academy of Sciences (PNAS) from 15. November 2024.

Hepatitis E is a common disease worldwide, but it often remains undetected. "There's no precise data on how often the infection affects the neurological system," says Michelle Jagst. What is known is that up to 11 percent of patients with certain neurological conditions such as Guillain-Barré syndrome and neuralgic amyotrophy either have HEV antibodies or are infected with the virus.

Cells are infected directly

In order to find out more, the research group is using a cell model that was developed at the Research Department of Neuroscience. It enables them to study for the first time how hepatitis E viruses affect nerve cells. "We take human kidney cells that are excreted in the urine and reprogram them to evolve into nerve cells," explains Barbara Gisevius. The researchers used these so-called primary neurons to determine that hepatitis E viruses are capable of infecting the nerve cells directly. The nerve cells have a low immune response to the virus and are therefore unable to protect themselves against it.

Our findings indicate that the neurological effects of HEV may be due - at least in part - to a direct infection of the nerve cells and not exclusively to other mechanisms such as a reaction of the immune system, even if the latter could also play a role."

Professor Eike Steinmann, Department of Molecular and Medical Virology, Ruhr University Bochum, Germany

The researchers also observed that the projections of the nerve cells shorten upon HEV contact. "This is an indication of morphological changes caused by the virus, which can also be observed in other viral diseases," according to the researchers.

In future, the researchers will continue their efforts to understand the interaction between HEV and neurons. "For example, it would be interesting to compare the nerve cells of healthy and HEV-infected people," concludes Michelle Jagst.

Source:
Journal reference:

Jagst, M., et al. (2024). Modeling extrahepatic hepatitis E virus infection in induced human primary neurons. Proceedings of the National Academy of Sciences. doi.org/10.1073/pnas.2411434121.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Virus causes 20 million infections annually as study uncovers hidden drivers of its evolution