New vaccine approach shows promise against Hepatitis C

Globally, approximately 58 million people are chronically infected with HCV, resulting in 290,000 annual deaths due to complications such as liver cirrhosis and liver cancer. Although modern antiviral treatments achieve high cure rates, the global elimination of HCV remains a difficult goal due to inadequate early detection and limited treatment options. Indeed, HCV has been identified as one of the globally prioritized endemic pathogens for vaccine research and development in the World Health Organization's "Immunization Agenda 2030." It is among the pathogens for which there is an urgent need for vaccines, as they cause a significant disease burden. An effective vaccine could fill this gap and limit the spread of the virus.

The innovative approach of the research

Our research lays the foundation for a new generation of vaccines. We focus on overcoming the challenges posed by the viral diversity and immunological evasion of HCV," explains Prof. Krey. The team employed novel computational protein designs to mimic specific regions of the viral glycoproteins E1 and E2, known as neutralization epitopes. These were transferred onto synthetic protein carriers and integrated into nanoparticles to elicit the most effective immune response possible. The study demonstrated that these epitope-focused immunogens in mouse models with a human antibody repertoire triggered a robust immune response. The produced antibodies were capable of successfully neutralizing multiple genetically diverse HCV strains.

Potential for vaccine development

The results of this study provide a promising approach to overcoming previous failures in developing an effective HCV vaccine.

This proof-of-concept approach not only brings us closer to an effective HCV vaccine but could also set new standards in vaccine development against this and other medically significant viruses."

Dr. Kumar Nagarathinam, lead author of the study

The study represents a significant milestone in vaccine research and could contribute to limiting the global spread of Hepatitis C in the long term. Future research aims to further enhance the efficacy of the immunogens. Additionally, the insights gained could be applied to other viruses that pose similar challenges for vaccine development.

Source:
Journal reference:

Nagarathinam, K., et al. (2024). Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. Science Advances. doi.org/10.1126/sciadv.ado2600.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Blood cells linked to long-lasting vaccine immunity