Study uncovers potential target for treating keloid scars

Keloids are fibrotic scars that extend beyond the boundaries of the original wound, often causing physical disfigurement and emotional distress. These scars are driven by an overproduction of extracellular matrix components like type I collagen, linked to an imbalance in tissue repair mechanisms. Current treatments show limited efficacy due to an incomplete understanding of the molecular processes behind keloid formation, leaving patients with few reliable options. Addressing this gap, the study delves deeper into the molecular drivers of keloid pathology, identifying potential targets for more effective interventions.

A study (DOI: 10.1093/burnst/tkae063) published in Burns & Trauma has shed light on how inhibiting CYP24A1, an enzyme involved in vitamin D metabolism, affects keloid keratinocytes. Conducted by researchers at the University of Cincinnati, the investigation revealed that suppressing CYP24A1 could reduce the expression of profibrotic genes, offering a fresh perspective on keloid treatment strategies.

The study employed an innovative approach, isolating primary keratinocytes from normal and keloid skin samples. By culturing these cells with and without vitamin D, alongside CYP24A1 inhibitors such as ketoconazole and VID400, the researchers assessed their impact on gene expression and cell behavior. Their findings were striking: CYP24A1 was significantly overexpressed in keloid keratinocytes at both mRNA and protein levels. While ketoconazole broadly reduced cell proliferation, VID400 specifically targeted the growth of keloid keratinocytes without affecting migration. Furthermore, both inhibitors effectively suppressed the expression of profibrotic genes, such as periostin and hyaluronan synthase 2. When combined with vitamin D, these inhibitors amplified gene-specific effects, suggesting their potential as adjunct therapies for keloids.

The implications of these findings extend beyond immediate clinical applications. By spotlighting CYP24A1 as a critical player in keloid pathology, the research adds to a growing body of evidence implicating vitamin D signaling pathways in regulation of wound healing and scarring. This new paradigm enhances scientific understanding and may contribute to more precise, effective therapies that could significantly improve the quality of life for those affected by keloids. With this pioneering work, dermatological science takes a bold step forward, offering renewed hope for patients and advancing the quest for tailored, impactful treatments.

Source:
Journal reference:

Hahn, J. M., et al. (2025). CYP24A1 is overexpressed in keloid keratinocytes and its inhibition alters profibrotic gene expression. Burns & Trauma. doi.org/10.1093/burnst/tkae063.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Low vitamin D in first trimester linked to higher preterm birth risk and reduced fetal length