Research identifies iron as crucial driver of stroke-related cell death processes

Ischemic stroke continues to rank among the top causes of death and long-term disability globally. While advances in acute treatments like clot retrieval and thrombolysis have improved outcomes, the challenge of managing reperfusion injury—a phase when restored blood flow can ironically harm brain tissue—persists. Key contributors to this damage are programmed cell death pathways, including ferroptosis and necroptosis. Yet, the intricate timing and interaction between these mechanisms remain poorly understood, leaving gaps in therapeutic strategies that urgently need addressing.

A team from Sichuan University, publishing their findings (DOI: 10.1016/j.gendis.2024.101262) on March 8, 2024, in Genes & Diseases, tackled this complex issue. Using RNA sequencing and protein analysis in ischemic mouse models, the researchers demonstrated that ferroptosis and necroptosis are triggered within hours of reperfusion, while apoptosis occurs later. They found that iron plays a central role in amplifying both early pathways by destabilizing redox balance, which accelerates oxidative damage and worsens neurological outcomes.

This groundbreaking research highlights the dynamic interplay between ferroptosis and necroptosis, revealing iron as a linchpin in their activation. The study also found that ferroptosis inhibitors like Liproxstatin-1 not only halt ferroptosis but also reduce necroptosis, and necroptosis inhibitors such as Necrostatin-1 show reciprocal effects. Iron chelation therapy with deferoxamine emerged as a particularly effective approach, mitigating both pathways by addressing the root cause—iron overload. These findings emphasize the need for early intervention and a multi-target therapeutic approach to minimize stroke-related damage.

Our findings unravel the intricate relationship between ferroptosis and necroptosis in stroke recovery. Iron stands out as a crucial driver of these processes, offering a highly actionable target for novel therapies. This dual-pathway approach could significantly improve outcomes for ischemic stroke patients."

Dr. Peng Lei, study's lead author

Looking ahead, this research paves the way for the development of combination therapies targeting multiple cell death pathways to alleviate reperfusion injury. Iron chelation strategies, in particular, could redefine stroke management and recovery, while also providing a foundation for precision medicine in treating stroke and other neurodegenerative disorders.

Source:
Journal reference:

Du, B., et al. (2024). Iron promotes both ferroptosis and necroptosis in the early stage of reperfusion in ischemic stroke. Genes & Diseases. doi.org/10.1016/j.gendis.2024.101262.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New brain imaging technique offers hope for better stroke rehabilitation