Webinar Overview
Proteins are highly versatile macromolecules that enact a wide range of biological functions such as catalysis, regulation, communication, mechanical support, movement, and transport. At least several million unique proteins exist in the human body which are, surprisingly, encoded by only fifteen thousand genes.
The divergent number of proteins compared to genes is due to protein variants, or “proteoforms”, that originate from a single gene as unique combinations of amino acid sequence variations (e.g. alternative splicing or endogenous proteolytical processing) and/or post-translational modifications.
It is important to note that out of all possible proteoforms from a single coding gene only one or a few may correlate with (disease) biology. Established bottom-up proteomics methods are generally used to identify proteins of interest via their proteolytical peptide fragments following tryptic digestion.
The tryptic protein digestion step which is at the heart of bottom-up proteomics leads however to issues with protein inference, connectivity, quantitation, and incomplete sequence/modification information. Top-down proteomics is an emerging technique that preserves key biological information by analyzing whole proteins directly by tandem mass spectrometry.
Developments in hardware and software advanced top-down proteomics to become an accessible methodology that offers unique possibilities in translational research and patient care. In this webinar we will discuss the importance of proteoforms from a clinical perspective, illustrate the potential of top-down proteomics using real-life examples, and give assistances for implementing top-down proteomics.
Speaker
Dr. Hans Wessels
Proteomics Scientist at Radboudumc, Nijmegen Area, Netherlands
Dr. Hans Wessels specializes in translational clinical proteomics driving further development of emerging technologies contributing to healthcare. His professional career started as proteomics specialist at the Radboud University Medical Center in 2003 working on inborn errors of metabolism and biochemistry of novel microorganisms. In this time, he was key to establish the core proteomics facility of the Radboudumc. From 2010-2015, he performed his PhD research at the Nijmegen Center for Mitochondrial Disorders where he conceived and applied novel methods to study mitochondrial complexomes. Since then, he is building his own line of research on the importance of proteoforms in disease pathology at the Radboudumc Proteomics Center. Novel innovative projects include the development and implementation of Top-Down proteomics and Glycoproteomics for translational research and patient care. His track record includes over thirty publications in peer-reviewed journals, two book chapters, and he has been a speaker at various international conferences and seminars.
Key Learnings
- What is the potential of proteoform profiling for Biological research and biomarker discovery
- Why and how intact protein based approach can reveal information hidden to the bottom-up approach
- How these techniques can be used in a clinical research environment
- What can be achieved while implementing these approaches on Bruker instruments