Entirely new approach to the treatment of aging

Researchers from the USC/Norris Comprehensive Cancer Center heralded an entirely new approach to the treatment of aging, inherited diseases and cancer in a review paper published in the May 27 issue of the journal Nature.

Dispelling the belief that the only way to treat such conditions is by fixing or replacing damaged genes, they instead focused on the field of epigenetics—the study of changes in gene silencing that occur without changes in the genes themselves.

Many genes in our bodies are permanently turned off as part of normal development. But sometimes that process goes awry, turning off genes that should otherwise remain active. The new field of epigenetic therapy, put forth by the USC researchers in their Nature review paper, aims to switch these genes back on.

In their article, Peter Jones, director of USC/Norris and Distinguished Professor of Biochemistry and Molecular Biology and Urology at the Keck School of Medicine, and his colleagues laid out their new perspective on the treatment of genetic disorders by discussing the potential ways to interfere with epigenetic gene silencing, and the ways in which that potential is already being exploited.

“The fact that many human diseases, including cancer, have an epigenetic etiology has encouraged the development of a new therapeutic option that might be termed ‘epigenetic therapy,’” Jones and his colleagues wrote. They added that a number of chemical compounds have been found that have an effect on some form of epigenetic gene change, and noted that “several of these agents are currently being tested in clinical trials,” including trials conducted at USC/Norris.

This Nature review came just days after the U.S. Food and Drug Administration (FDA) approved the epigenetic inhibitor azacitidine (Vidaza™, Pharmion Corporation) for the treatment of a pre-leukemic bone-marrow disorder known as myelodysplastic syndrome, or MDS.

MDS, which is characterized by the production of abnormal, immature blood cells, affects between 10,000 and 30,000 people each year, is most prevalent in people over age 60, and can be fatal. Until now, there was no approved treatment for MDS.

Azacitidine was first synthesized in the 1960s in Czechoslovakia; it received its first exposure in the United States in the Childrens Hospital Los Angeles laboratory of then-fellow Peter Jones.

Although the drug had initially been envisioned as a chemotherapy agent, Jones showed that it had great utility in the laboratory because it could turn on genes that had been previously locked down by methylation—a type of epigenetic change in which a methyl group becomes physically attached to the region of a gene that regulates its production of protein, shutting it down.

But Jones, who is one of the world’s pre-eminent epigenetics experts, said that azacitidine’s approval is bigger than its role in MDS.

“This is the first approved drug in a new kind of therapy—epigenetic therapy,” Jones noted. “That gives it tremendous potential importance not just in this disease, but in a host of others as well.”

Indeed, cancer and its relatives are far from the only conditions that may be affected by epigenetic gene silencing, Jones noted. A number of other diseases—most notably several that can lead to intellectual disabilities—appear to have epigenetic roots. Among them are Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome and Rett syndrome. Jones also sees the application of epigenetic therapy to combat disorders caused by aging, providing the opportunity to turn on genes shut down by the aging process.

The search for the right drugs to undo the epigenetic damage as wide-ranging as their possible targets. Jones is involved in research into the utility of a compound called azadeoxycytidine—a more specific version of azacitidine that only affects DNA and thus potentially carries fewer side effects. Many of the major pharmaceutical companies have at least one methylation inhibitor trial ongoing, Jones added, and there are dozens of additional compounds being screened for their potential utility.

“It is apparent that we are just at the beginning of understanding the substantial contributions of epigenetics to human disease, and there are probably many surprises ahead,” Jones and colleagues noted in their review. “Elucidating the whole bandwidth of epigenetic mechanisms is an exciting challenge and will eventually lead to a clearer understanding of the development of human disease and lead therapeutic concepts into new directions.”

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Aging of lung stem cells drives iron deficiency and reduces capacity for tumor formation