First identification of the genetic basis of disease in a patient with a complex I assembly defect

Mitochondrial complex I deficiency is one of the most common defects in patients with mitochondrial disease. The deficiency results from a failure to assemble the enzyme properly, but the nature of the molecular chaperones that are necessary for this process in mammals have remained obscure.

In a new study appearing on October 3 in The Journal of Clinical Investigation, Eric Shoubridge and colleagues McGill University identify candidate proteins involved in complex I assembly, and show that one of the candidates, B17.2L, is an assembly factor. The authors identify a null mutation in a patient with a progressive encephalopathy, and show that the defect can be functionally complemented by expression of the wild-type cDNA in patient cells. They also show that an antibody against the B17.2L protein recognizes a subassembly of complex I in several additional patients with complex I assembly defects, but not the whole enzyme complex itself, consistent with a role as a molecular chaperone.

This is the first molecular chaperone to be characterized for mammalian complex I, and is the first identification of the genetic basis of disease in a patient with a complex I assembly defect.

In a related commentary, Robert Nussbaum writes, "The research described here combines clever model organism genomics and bioinformatics to identify the first mammalian protein required for the normal assembly of complex I."

http://www.jci.org/

A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals variability in polygenic risk scores for predicting heart disease