Speed accuracy tradeoff in olfaction

Researchers at the Monell Chemical Senses Center have found that taking as little as a hundred milliseconds longer to smell an odor results in more accurate identification of that odor.

This seemingly simple observation has important implications regarding how olfactory information is processed by the brain. The findings appear in the August issue of Neuron.

By demonstrating a clear relationship between odor sampling time and accurate odor identification, the Monell researchers solved a controversy centering on whether the brain processes olfactory information in a similar manner to how it processes visual and auditory stimuli.

"Previous published work suggested that olfaction was different from vision and audition in lacking this fundamental property," notes senior author Alan Gelperin, PhD, a computational neuroscientist. "We now can use accumulated information about these other sensory systems to help us understand olfaction."

Exactly how the many thousands of different odorants are detected and identified remains a mystery. The human nose probably contains several hundred different types of olfactory receptors, while animals with a highly developed sense of smell - such as dog, rat, or cat - may have over a thousand different receptor types. It is thought that perception of any one odorant probably involves simultaneous stimulation of several different receptors and that an olfactory code enables identification of specific odorants by the brain. Previous experience and motivational state also interact with odorant information to influence processing and identification. It still is not known how the brain deals with all this information to let us perceive odors.

Using an approach that has provided insight into information processing by the visual and auditory systems, the Monell researchers developed a new behavioral paradigm using trained mice to ask whether longer exposure to an odor would result in more accurate identification of that odor. The results indicated that the mice needed extra time to accurately identify more complex odors.

"The well-trained mouse needs almost half a second to solve a difficult olfactory discrimination task," says lead author Dmitry Rinberg, PhD. "This time window is very important as we seek to design experiments and develop models that explain what the brain is doing in the extra time it takes to identify complex odors."

Rinberg, a physicist and computational neuroscientist, comments, "The development of color television was based on extensive studies of visual sensory processing. Modern MP3 players are built based on a deep knowledge about properties of our hearing capabilities. Similarly, increased knowledge of olfactory processing has the obvious potential to open many doors, perhaps including development of electronic olfactory systems that would have capabilities such as identification of odors for medical diagnosis or detection of land mines."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The X factor: Decoding brain aging differences between men and women