Food scientists develop rapid, reliable technique to ensure fruit and vegetable juices adhere to quality standards

Increasingly, consumer products, especially food and beverage products, are being scrutinized for better quality.

At the University of Missouri-Columbia, a food science expert has developed a rapid, reliable and efficient technique to ensure fruit and vegetable juice products adhere to federal and international quality standards.

Collaborating with scientists in the United States and from around the world, Mengshi Lin, assistant professor of food science in the College of Agriculture, Food and Natural Resources, has successfully used a new approach combining DNA sequencing technique with mid-infrared spectroscopy to rapidly and accurately identify Alicyclobacillus, a common bacterium found in apple, carrot, tomato, orange and pear juices, tropical fruit juices and juice blends. The bacterium won't cause human sickness, but it affects flavor and results in spoilage.

Currently, a number of different testing methods are utilized, some of which yield false negative results. This has complicated international trade. Japan, along with other developed countries, has a zero tolerance for this bacterium in imported juices, Lin said.

He said identification is a challenge because spoilage can be difficult to distinguish visibly until test results are confirmed or after juice products have been opened and tasted by consumers. In addition to agitating taste buds, the latter can affect consumer confidence.

Lin's technique is significant because it identifies the organism quickly ,in a matter of hours, unlike traditional culturing methods, which are time consuming and require five to seven days to process. Lin said that testing time is critical for juice processing companies, which monitor for the bacteria during the processing and final product stage. He said the DNA technique in combination with infrared spectroscopy technique won't cause long delays in production.

"This combination will be the best way to quickly and accurately detect and identify the bacteria," said Lin, who worked with researchers from Washington State University and Hashemite University in Jordan, to develop the technique. "If processors find the bacteria, they can go back quickly and find the affected products."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Ultra-processed foods increase active psoriasis risk, study shows