New invaluable tool in drug manufacture

Drug companies could save millions thanks to a new technology to monitor crystals as they form.

The technique, developed by University of Leeds engineers, is a potentially invaluable tool in drug manufacture, where controlling crystal forms is crucial both to cost and product safety.

Most drug compounds are crystalline and their structure can affect both their physical attributes and their performance. Changes to these structures are often caused by undetected fluctuations in the process.

"If you were to use a pencil to write on glass you wouldn't get very far, but use a diamond and you could write your name. Yet both are pure forms of carbon. It's the same with different solid forms of the same drug; they can have completely different properties," says Dr Robert Hammond of the University's Faculty of Engineering, who leads the research team.

"Drug molecules are becoming increasingly complex and the challenges involved in processing them means that it is not always possible to successfully produce the desired form reliably. That's why there's such enormous potential for our system. We're now able to look at crystals as they are forming in a reactor, something that has never been done before."

The new technology identifies and monitors changes in crystal structures on-line, providing a method of ensuring production of the desired drug compounds. The bespoke system has been developed by engineers at the University of Leeds in collaboration with Bede X-Ray Metrology as part of the EPSRC funded Chemicals Behaving Badly programme.

Called polymorphism, changes in crystal structure during processing can lead to huge delays in bringing drugs to market, costing drug companies many millions of pounds. It can also lead to challenges to intellectual property protection. There have been a number of high profile cases where patents have been challenged by companies making an established formulation using a different polymorph.

"It's an enormous problem for drug companies," explains Dr Hammond. "Their patents are extremely valuable - they are granted for 20 years, but it can take ten years to bring a new drug to market, which only leaves another ten to recoup the cost of its development."

The technology developed at Leeds is based on the 'gold standard' method for monitoring crystal structures - powder X-ray diffraction, the primary tool for studying polymorphs.

"There's enormous commercial potential for this technology, for example it could be developed to work at manufacturing plant scales and can be applied to speciality chemical industries as well," says Dr Hammond. "We're interested in talking to pharmaceutical and speciality chemical companies that can help us drive this forward."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
FDA strengthens AI regulation to ensure patient safety and innovation in healthcare