A new role for a critical DNA repair molecule in the immune system

The human immune system is a brilliantly adaptable weapon against foreign invaders. But it all depends on the work of specialized cells called lymphocytes that have made a risky evolutionary gambit to mutate their own DNA.

New research to be published this week in Nature shows for the first time that a molecule devoted to DNA repair plays a broader role in this genetic reshuffling - called recombination - than scientists had thought. Because mistakes in recombination can have catastrophic consequences, the new research could help explain processes that lead to some of the most aggressive types of cancer, such as leukemia and B cell lymphomas.

Michel C. Nussenzweig, Sherman Fairchild Professor and head of the Laboratory of Molecular Immunology, his brother André Nussenzweig, a senior investigator at the National Institutes of Health Experimental Immunology Branch in the National Cancer Institute, and colleagues used genetically altered "knockout" mice that were missing the DNA repair molecule, known as 53BP1, to study how its absence would affect a specific type of genetic reshuffling called V(D)J recombination.

They found that the knockout mice had 50 percent fewer lymphocytes in their bone marrow and 80 percent fewer in their thymus, a collection of glands that helps produce specialized immune cells. The mice also had problems with the lymphocytes that remained. To combat infection, these cells must have receptors that can recognize a foreign substance when they encounter it, beginning the process of producing an antibody to fight it. In mice lacking 53BP1, however, the sections of DNA, or loci, that must recombine to build these receptors are farther apart than normal, making their recombination much less likely, the researchers found.

The lack of 53BP1 prevented the proper reshuffling of genetic material during recombination. Whenever a section of genetic material is cut loose in order to be recombined, it must be quickly reattached or else it risks migrating to another chromosome in a process called translocation, a common cause of cancer. In normal V(D)J recombination, that does not happen, but sometimes the genetic material that is being reshuffled does have to travel to a relatively distant place on its own chromosome. The researchers found that that process of long-distance DNA end-joining, happened 2.5 times less often in mice that lacked 53BP1.

And, when recombination falters, serious consequences follow. "Problems with these reactions lead to immunodeficiencies and cancer," says Nussenzweig, who is also a Howard Hughes Medical Institute investigator. Preventing 53BP1 from repairing DNA has been linked to Riddle Syndrome, a recently diagnosed immunodeficiency disorder, and it is likely related to many others, he adds. "We would like to know now whether any break in chromosomes at a distance, including translocations, is facilitated by 53BP1. We suspect that it will be and we want to know how. My colleague Titia de Lange has been looking at this and has demonstrated that 53BP1 plays a role in the motility of a broken DNA locus."

De Lange's research, also published in Nature this week, shows that one way that 53BP1 repairs damaged DNA is by helping the displaced genetic material move to its proper destination.

Nature online: October 19, 2008

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Stanford researchers unveil the key role of extrachromosomal DNA in cancer