Insulin metabolism regulates body's internal clock

Insulin, folate metabolism influence circadian rhythms, according to Penn study

While scientists have known for several years that our body's internal clock helps regulate many biological processes, researchers have found that the reverse is also true: Many common biological processes - including insulin metabolism - regulate the clock, according to a new study by investigators at the University of Pennsylvania School of Medicine, the Genomics Institute of the Novartis Research Foundation, and the University of California at San Diego.

The new data, published online in Cell this week, suggest that someday physicians may be able to use small molecules that inhibit or stimulate these biological processes in order to influence a person's clock when it gets out of sync due to jetlag or shift work, and to devise new ways to treat metabolic disorders that are intimately tied to the body's daily cycles.

Using a genome-wide screen, the investigators found that reducing expression of any one of hundreds of genes could substantially alter the length of the circadian cycle, which controls the 24-hour sleep/wake cycle. The clock-influencing genes are involved in a large number of biological processes, but the researchers found that components of insulin metabolism, folate metabolism, and the cell cycle were overrepresented in the gene screen, suggesting that these pathways are closely linked to the clock.

"Clock biologists all appreciated that the communication went one direction - from the clock to biological processes - but I don't think anyone anticipated that there would be this level of integration with cell metabolism and the cell cycle, or all these other pathways impinging on clock function," says John Hogenesch, PhD, Associate Professor of Pharmacology in the Institute for Translational Medicine and Therapeutics at Penn. Hogenesch is a co-senior author on the paper with Steve Kay, Dean of the Division of Biological Sciences at UCSD. "There were some hints this might occur for some genes, but not to this extent."

The idea that biological processes might have feedback systems with the circadian clock makes some sense to Hogenesch. For example, he points to the influence of insulin metabolism, saying "If your energy requirements aren't being met, instead of spending a lot of energy on a cell division, a cell might necessarily delay it. It is the same strategy we use when we are not ready to do something, we delay. Maybe procrastination is an evolutionary cellular strategy enabled by the clock to confront situations where resources are limited."

While biologists regularly draw molecular pathways as if they are distinct from one another, they know the reality is much different. "This is a good example showing how dozens of pathways are functionally interconnected with clock function and vice versa," Hogenesch says. "It is important to remember that when you start to change function with a drug, for example, that the perturbation can have unanticipated consequence. Sometimes these consequences are good, but sometimes not."

Hogenesch stresses that while the new experiments show a feedback loop between biological processes and the clock in individual cells in culture, it is not yet clear how feedback systems work in the whole organism. Currently the team is working on biochemical and genetic experiments to answer that question.

Source: University of Pennsylvania School of Medicine

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Insulin resistance linked to increased risk of aortic stenosis