Researchers describe how PDNF protein prolongs the life of T. cruzi parasite

The parasite Trypanosoma cruzi (or T. cruzi), which causes Chagas' disease, will go to great lengths to evade death once it has infected human host cells, researchers have discovered. In a study published in the November 17 online issue of Science Signaling, the researchers describe how a protein called parasite-derived neurotrophic factor (PDNF) prolongs the life of the T. cruzi parasite by activating anti-apoptotic (or anti-cell-death) molecules in the host cell. These protective mechanisms help to explain how host cells continue to survive despite being exploited by T. cruzi parasites.

"We asked ourselves, 'How is it possible that the host cells stay alive for so long with thousands of T. cruzi parasites consuming the host cell's vital resources?' We discovered that PDNF on the surface of the T. cruzi parasite essentially inhibits cell death signals and activates cell-protective mechanisms, ensuring T. cruzi sufficient time to develop and reproduce in the host cell," says senior author Mercio Perrin, MD, PhD, professor in the pathology department at Tufts University School of Medicine (TUSM) and member of the immunology program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

Taking a multi-faceted approach, the researchers used bioinformatics, immunochemistry, intracellular colocalization microscopy, and in vitro enzymatic techniques to study T. cruzi survival in the host. Perrin and co-author Marina Chuenkova, PhD, a research instructor in the pathology department at TUSM and the Sackler School, demonstrated that PDNF is a substrate and activator of Akt kinase, an enzyme that promotes cell survival by inhibiting "cell death" proteins.

"Further investigation showed that within T. cruzi-infected cells, PDNF also activates increased production of Akt, prolonging its protective effects," says Chuenkova. "Akt is a key regulator of diverse cellular processes, and supports cell survival not only by inhibiting apoptotic molecules, but additionally by increasing nutrient uptake and metabolism," she continued.

"In short, the T. cruzi parasite has a means of establishing life insurance once it has invaded the host. If we can fully understand the mechanisms behind this protection, we can begin to explore ways to undermine it with treatment," said Perrin.

Chagas' disease, typically transmitted to humans by blood-feeding insects, infects an estimated 8 to 11 million people throughout Mexico, and Central and South America. Although it is still rare in the United States, according to the Centers for Disease Control and Prevention (CDC), there are 300,000 people with Chagas' disease living in the United States, most of whom acquired the disease while living in other countries.

The acute phase of Chagas' disease can result in fever or swelling at the site of the insect bite, but many people do not experience symptoms at all. If left untreated, the disease enters an indeterminate phase in which no symptoms are present. During this phase, many people are not aware that they are infected, but approximately 30 percent will eventually develop life-threatening complications of the disease, including enlargement of the digestive tract and/or heart.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough in protein engineering may lead to more effective cancer therapies