Findings may help develop new antiviral drugs for influenza

Investigators at Burnham Institute for Medical Research (Burnham), Mount Sinai School of Medicine (Mount Sinai), the Salk Institute for Biological Studies (Salk) and the Genomics Institute of the Novartis Research Foundation (GNF) have identified 295 human cell factors that influenza A strains must harness to infect a cell, including the currently circulating swine-origin H1N1. The team also identified small molecule compounds that act on several of these factors and inhibit viral replication, pointing to new ways to treat flu. These findings were published online on December 21 in the journal Nature.

Influenza A virus contains only enough genetic information (RNA) to produce 11 proteins and must co-opt host cellular machinery to complete its life cycle. Sumit Chanda, Ph.D., of Burnham, Megan Shaw, Ph.D., of Mount Sinai, John Young, Ph.D., of Salk, Yingyao Zhou, Ph.D., of GNF and others used RNAi screening technology to selectively turn off more than 19,000 human genes to determine which human factors facilitate viral entry, uncoating, nuclear import, viral replication and other necessary functions of the virus.

"Because influenza mutates so readily, it has become a moving target for therapeutic intervention, making it difficult to treat circulating strains, including the H1N1 swine flu," said Dr. Chanda. "As a result, there is now widespread resistance to two classes of antiviral drugs. However, by targeting more stable human host factors, we may be able to develop therapies that prevent or treat a variety of influenza A strains and are more likely to maintain their effectiveness."

"This study has provided us with crucial knowledge of the cellular pathways and factors the influenza virus exploits to replicate" added Dr. Shaw. "Each of these represents an 'Achilles heel' of the virus and vastly increases the number of potential targets for new influenza antiviral drugs."

The team screened human A549 (lung epithelial) cells infected with a modified influenza virus against the genome-wide siRNA library. Conducting two independent screens, they confirmed that selectively impairing each of 295 cellular genes reduced viral infection, effectively illuminating the path followed by influenza viruses during the infection of a cell. Importantly, they found that inhibiting proteins in known drug target classes, such as kinases, vATPases, and tubulin, impairs influenza growth, suggesting that small molecular weight compounds may be developed as host factor-directed antivirals. Protein interactions dataset analysis confirmed 181 host cellular factors that mediate 4,266 interactions between viral or cellular proteins.

Renate Koenig, Ph.D., of Burnham and Peter Palese, Ph.D., Silke Stertz, Ph.D., and Adolfo Garcia-Sastre, Ph.D., of Mount Sinai also collaborated on this research.

"Trying to identify all the host proteins that are required for the replication of influenza viruses is a wonderful challenge and we have come closer to 'knowing' all the genes involved," said Dr. Palese.

Dr. Young added, "These findings, combined with those from other RNAi screens, provide a blueprint of the cellular processes that are exploited more generally by viruses, pointing towards development of future broad-spectrum antiviral approaches."

Source: Burnham Institute for Medical Research

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Diabetes drugs cut asthma attacks by up to 70%, reshaping treatment options