Nanotope publishes preclinical data demonstrating cartilage regeneration

Arrowhead Research Corporation has announced publication in Proceedings of the National Academy of Sciences (PNAS) of a study using Nanotope's lead compound for cartilage regeneration.

The study's authors, which include Nanotope co-founder Dr. Samuel Stupp, showed that Nanotope's bioactive nanofiber system promotes the growth of new cartilage in a rabbit model. The treatment is engineered to repair cartilage defects by working with an animal's own bone marrow stem cells to stimulate the production of new natural cartilage. This is an area of intense interest for the medical community because of the large number of joint injuries and, unlike bone, damaged cartilage does not naturally grow back in adults.

Nanotope's proprietary material was used in conjunction with microfracture, an established therapy whereby small holes are made in the bone beneath damaged cartilage in order to create a scar or clot. Nanotope's nanofiber gel was injected as a liquid into the microfracture holes where it self assembled to form a bioactive scaffolding that promotes the growth and integration of new natural cartilage. The procedure was performed both with and without the use of growth factors, and the study showed that Nanotope's material performed better than microfracture alone and that it did not require the expensive growth factors for positive results. The scaffolding leveraged the body's own stem cells and natural growth factor production to promote regeneration.

"We view these results as a significant step forward toward a potentially new and innovative way to treat cartilage injuries in the future," said Dr. Christopher Anzalone, CEO of Arrowhead. "More broadly, these data provide another important proof of concept for Nanotope's platform technology for regenerative medicine. With study results published in multiple peer reviewed scientific journals, the platform has demonstrated the ability to regenerate diverse tissues, from spinal cord to cartilage. It is our hope that Nanotope's technology may someday be used therapeutically to repair a wide range of tissue types damaged by traumatic injury, advanced age, or disease."

The article, entitled "Supramolecular Design of Self-assembling Nanofibers for Cartilage Regeneration" appeared in the February 2, 2010 issue of PNAS Online.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Small brain-penetrating molecule offers hope for treating aggressive brain tumors