'Achilles heel' for HCV infection

Discovery points to a potential new strategy for treating the disease

Scientists at the Gladstone Institute of Virology and Immunology (GIVI) have found that an enzyme associated with the storage of fat in the liver is required for the infectious activity of the hepatitis C virus (HCV). This discovery may offer a new strategy for treating the infection.

More than 160 million people are infected throughout the world, and no vaccine is available to prevent further spread of the disease. Current treatments are not effective against the most common strains in the US and Europe. The study, published in the journal Nature Medicine, shows that the enzyme DGAT1 is a key factor in HCV infection. With several potential DGAT1 inhibitors already in the drug-development pipeline, a treatment for HCV may be possible in the near future.

"Our results reveal a potential 'Achilles heel' for HCV infection," said Melanie Ott, MD, PhD, senior author on the study. "Several DGAT1 inhibitors are already in early clinical trials to treat obesity-associated diseases. They might also work against HCV."

At first glance, the HCV lifecycle is fairly simple. The virus enters the cell. One large protein is produced and cut into several smaller viral enzymes and proteins that build the virus. The RNA genome is copied, and the new RNAs and structural proteins are used to make new virus particles that are released into the blood stream for to infect more cells. These processes were thought to occur at specialized membranes inside the cell. However, recently it has been shown that fat droplets are critically involved.

Fat droplets, which store fat in cells, have become a hot new topic in biology. DGAT1 is one of the enzymes that help to form fat droplets. The Gladstone team, led by Eva Herker, PhD, discovered that HCV infection and viral particle production are severely impaired in liver cells that lack DGAT1 activity.

"DGAT enzymes produce the fat that is stored in the droplets that are important for HCV replication, so we wondered if inhibiting those enzymes might disrupt the viral life cycle," said Dr. Herker. "We found that HCV specifically relies on one DGAT enzymes, DGAT1. When we inhibit DGAT1 with a drug, the liver still produces fat droplets through another DGAT enzyme but these droplets cannot be used by HCV."

The team sought to identify which step in the HCV lifecycle requires DGAT1. They found that DGAT1 interacts with one viral protein, the viral nucleocapsid core protein, required for viral particle assembly. The core protein normally associates with the surface of fat droplets but cannot do so when DGAT1 is inhibited or missing in infected cells.

Researchers at Gladstone Institute of Cardiovascular Disease had previously cloned DGAT1.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Elevated antibody responses to Epstein-Barr virus linked to increased risk of multiple sclerosis