Reason behind recurrence of CLL in lymph nodes and bone marrow after chemotherapy

In research to be presented at the American Society of Hematology (ASH) annual meeting, investigators at Dana-Farber Cancer Institute in Boston offer a new explanation of why chronic lymphocytic leukemia (CLL) tends to recur in the lymph nodes and bone marrow after being cleared from the bloodstream by chemotherapy. Their findings will be reported during in an oral session on Monday, Dec. 6, at 4:45 p.m. in room 315 of the Orange County Convention Center.

To uncover the reasons for CLL's resilience in the marrow and lymph nodes, the researchers employed a technique called BH3 profiling, which had been devised by senior author Anthony Letai, MD, PhD, and his Dana-Farber colleagues in 2005. The technique makes it possible to identify cancer cells that are less likely to undergo mitochondrial apoptosis (a form of programmed cell death involving cell structures called mitochondria) because of alterations in the Bcl-2 family of proteins. These abnormalities can make such cells less susceptible to both standard chemotherapy and novel, targeted agents.

In the current study, Letai and his associates found that when CLL cells from patients were grown with non-cancerous support cells from the bone marrow and lymph nodes, the CLL cells were more resistant to apoptosis - and hence harder to kill with treatment - than were CLL cells from the bloodstream. Using BH3 profiling, they discovered that although circulating CLL cells were likely to die by mitochondrial apoptosis in response to treatment, CLL cells grown among non-cancerous cells were much less likely to die this way. The presence of these normal cells, known as stroma, apparently helped the CLL cells survive, despite receiving treatment that would otherwise have resulted in their death.

"We hope that by clearly identifying the ability of stromal cells to reduce the CLL cells' capability to undergo apoptosis, we can exploit strategies to selectively target the 'help' that stromal cells give to CLL cells," says Letai.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals how cancer cells evade chemotherapy in low-glucose environments