During embryonic development, sensory and motor fibers interact to form nerves in the limbs. The research team led by Dr. Andrea Huber Br-samle of the Institute of Developmental Genetics of Helmholtz Zentrum M-nchen has now elucidated how this interaction functions at the molecular level: The cell surface receptor neuropilin-1 is present in both sensory and motor nerve fibers and controls their interaction in order to correctly regulate growth.
"We observed that motor and sensory axons were both able to guide and lead the formation of the spinal nerves of the arms and legs," said Rosa-Eva H-ttl and Heidi S-llner, lead authors of the study and doctoral students in Dr. Andrea Huber Br-samle's research group. This finding surprised the authors because it had previously been assumed that the motor axons were always responsible for establishing the correct trajectories. In the same study, the researchers created a model to better elucidate structural changes in human neurodegenerative disorders and following trauma : "Our next goal," said Dr. Huber Br-samle, "is to find out to what extent neuropilin-1 also controls the formation of fiber tracts in the brain."