Researchers discover LRRK2 gene mutation may cause Parkinson's disease

Researchers at Mount Sinai School of Medicine have discovered a way that mutations in a gene called LRRK2 may cause the most common inherited form of Parkinson's disease. The study, published online this month in the journal Public Library of Science, shows that upon specific modification called phosphorylation, LRRK2 protein binds to a family of proteins called 14-3-3, which has a regulatory function inside cells. When there is a mutation in LRRK2, 14-3-3 is impaired, leading to Parkinson's. This finding explains how mutations lead to the development of Parkinson's, providing a new diagnostic and drug target for the disease.

Using one-of-a-kind mouse models developed at Mount Sinai School of Medicine, Zhenyu Yue, PhD, Associate Professor of Neurology and Neuroscience, and his colleagues, found that several common Parkinson's disease mutations-including one called G2019S-disturb the specific phosphorylation of LRRK2.This impairs 14-3-3 binding with varying degrees, depending on the type of mutation.

"We knew that the LRRK2 mutation triggers a cellular response resulting in Parkinson's disease, but we did not know what processes the mutation disrupted," said Dr. Yue. "Now that we know that phosphorylation is disturbed, causing 14-3-3 binding to be impaired, we have a new idea for diagnostic analysis and a new target for drug development."

Dr. Yue's team also identified a potential enzyme called protein kinase A (PKA), responsible for the phosphorylation of LRRK2. Although the exact cellular functions disrupted by these changes are unclear, their study provides a starting point for understanding brain signaling that contributes to the disease. Recent studies have shown that 14-3-3 binds to other proteins implicated in inherited Parkinson's disease and has a neuroprotective function, and when the binding is impaired due to these mutations, the protection may be lost. The findings also demonstrate additional insight into the functional relevance of the LRRK2 and 14-3-3 interaction.

The presence of 14-3-3 in spinal fluid is already used as a biomarker for the presence of neurodegenerative diseases. Further applications of these findings could point to the use of 14-3-3 as a biomarker in testing for Parkinson's disease.

Source: The Mount Sinai Hospital / Mount Sinai School of Medicine

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers a previously unknown genetic link to autism spectrum disorder