DNA rearrangements in roundworm chromosomes offer insight into genome duplications in developing tumors

A study of DNA rearrangements in roundworm chromosomes may offer new insight into large-scale genome duplications that occur in developing tumors.

A report of the research led by University of North Carolina at Chapel Hill School of Medicine scientists was published in the April 22 online edition of the journal Science. The study focused on telomeres, a region of repetitive DNA sequence that protects the ends of chromosomes from deterioration or from fusing with other chromosomes.

In many organisms, including humans, chromosome ends are capped by simple repetitive sequences that are replenished by addition of new telomere repeats by the enzyme telomerase. Since most human cells don't produce enough of the enzyme, they are unable to maintain the repeat DNA sequences that cap their chromosome ends.

"Once telomere repeat sequences erode completely, a chromosome end will 'uncap' and fuse with another uncapped chromosome end," said senior study author Shawn Ahmed, PhD, associate professor of genetics and a member of the UNC Lineberger Comprehensive Cancer Center. "Thus, the chromosome aberrations that we isolated from telomerase mutants in the common roundworm C. elegans were end-to-end chromosome fusions."

Ahmed points out that during development of many forms of cancer, chromosome ends erode and 'uncap', and many end-to-end chromosome fusions occur. These fusions create genome rearrangements that may contribute to tumor development.

The new findings tested predictions of a long-standing model developed in the 1940s by geneticist Barbara McClintock, 1983 Nobel Laurate in Physiology or Medicine. This model, termed the breakage-fusion-bridge cycle, suggested that DNA duplications at fused chromosome ends should be perfect inverted duplications that are created by fusion and then breakage of a fused chromosome during the process of cell division, mitosis.

"Surprisingly, many of the duplications that we studied were 'interrupted' by deletions as well as single copy, three copy and four copy segments of DNA. In addition, some duplications were created by events that copy DNA by hopping backwards and forwards along a chromosome," Ahmed said. "These observations defy predictions of the breakage-fusion-bridge cycle and suggest that an alternative model: a promiscuous DNA replication process may be responsible for creating duplications at fused chromosome ends."

The researcher adds: "Similar interrupted duplications have been observed for segments of the human genome that spontaneously duplicate to cause inherited diseases. So, the duplications that we observe at fused chromosome ends may be created by a 'general' duplication mechanism.

"Our study provides a blueprint for solving structures of analogous chromosome rearrangements that may occur frequently in tumor genomes, many of which are currently being sequenced."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Multitarget stool DNA test shows promise for early colorectal cancer detection