Nanoparticles do not penetrate beneath outermost layer of cells when applied to the skin

Ultra-tiny zinc oxide (ZnO) particles with dimensions less than one-ten-millionth of a meter are among the ingredients list of some commercially available sunscreen products, raising concerns about whether the particles may be absorbed beneath the outer layer of skin. To help answer these safety questions, an international team of scientists from Australia and Switzerland have developed a way to optically test the concentration of ZnO nanoparticles at different skin depths. They found that the nanoparticles did not penetrate beneath the outermost layer of cells when applied to patches of excised skin. The results, which were published this month in the Optical Society's (OSA) open-access journal Biomedical Optics Express, lay the groundwork for future studies in live patients.

The high optical absorption of ZnO nanoparticles in the UVA and UVB range, along with their transparency in the visible spectrum when mixed into lotions, makes them appealing candidates for inclusion in sunscreen cosmetics. However, the particles have been shown to be toxic to certain types of cells within the body, making it important to study the nanoparticles' fate after being applied to the skin. By characterizing the optical properties of ZnO nanoparticles, the Australian and Swiss research team found a way to quantitatively assess how far the nanoparticles might migrate into skin.

The team used a technique called nonlinear optical microscopy, which illuminates the sample with short pulses of laser light and measures a return signal. Initial results show that ZnO nanoparticles from a formulation that had been rubbed into skin patches for 5 minutes, incubated at body temperature for 8 hours, and then washed off, did not penetrate beneath the stratum corneum, or topmost layer of the skin. The new optical characterization should be a useful tool for future non-invasive in vivo studies, the researchers write.

Source: Optical Society of America

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New RNA molecules in extracellular vesicles could transform cancer diagnosis