Study may help design better DAA drug cocktails to treat HCV

Hepatitis C virus (HCV) infection affects about 4 million in the United States and is the primary cause of liver cirrhosis and liver cancer. Current therapy against HCV is suboptimal. Daclatasvir, a direct acting antiviral (DAA) agent in development for the treatment of HCV, targets one of the HCV proteins (i.e., NS5A) and causes the fastest viral decline (within 12 hours of treatment) ever seen with anti-HCV drugs. An interdisciplinary effort by mathematical modelers, clinicians and molecular virologists has revealed that daclatasvir has two main modes of action against HCV and also yields a new, more accurate estimate of the HCV half-life.

Results of the NS5A study are published in the prestigious Proceedings of the National Academy of Sciences (PNAS) on February 18th, 2013.

"Ultimately, our study will help design better DAA drug cocktails to treat HCV," said Loyola University Health System (LUHS) and Stritch School of Medicine (SSOM) mathematical modeler Harel Dahari, Ph.D, who co-led the study. Dahari is one of five members of the Division of Hepatology at Loyola headed by Scott Cotler, MD who authored the study along with Thomas Layden, MD, HCV virologist Susan L. Uprichard, Ph.D and Dr. Uprichard's Ph.D graduate student Natasha Sansone. The study was co-led with Jeremie Guedj (Institut National de la Santé et de la Recherche Médicale) and conducted with Drs. Alan Perelson (Senior Fellow at Los Alamos National Laboratory), Libin Rong (Oakland University) and Richard Nettles (Bristol-Myers Squibb).

The new study documents HCV kinetic modeling during treatment both in patients and in cell culture that provides insight into the modes of action of daclatasvir. In addition, the study suggests a more accurate estimate of HCV clearance from circulation previously estimated in 1998 by Drs. Dahari, Layden, Perelson and colleagues in Science.

"Our modeling of viral kinetics in treated patients predicts that daclatasvir not only blocks the synthesis of the viral RNA within infected cells but also blocks the secretion of infectious virus from the cells," explained Dahari. This prediction was confirmed in Dr. Uprichard's laboratory using cultured liver cells that support the entire life cycle of HCV infection. Drs. Dahari and Uprichard are directors of a new program for experimental and translational modeling recently established at Loyola to promote the type of interdisciplinary research exemplified in this publication.

Additional 2013 Dahari Research Papers

Additional research conducted by Dahari and colleagues related to the new Loyola program for experimental and translational modeling in other professional journals includes:

-A study on the effect of ribavirin on HCV kinetics and liver gene expression, led by researchers from the National Institute of Health and published in Gut.

-A letter on understanding triphasic HCV decline during treatment in the era of IL28B polymorphisms and direct acting antiviral agents via mathematical modeling, published in the Journal of Hepatology.

-A study showcasing a mathematical model of the acute and chronic phases of Theiler murine encephalomyelitis virus (TMEV) infection - a highly relevant experimental animal model for multiple sclerosis - that can serve as an important tool in understanding TMEV infectious mechanisms and may prove useful in evaluating antivirals and/or therapeutic modalities to prevent or inhibit demyelination published in the Journal of Virology.

Dr Dahari is a recognized international leader in the field of viral kinetics. "Loyola is honored to have Dr. Dahari as a member of the Hepatology faculty; his ground-breaking research will help reinforce Loyola's leadership in the treatment of hepatitis C," said David W. Hecht, MD, MS, MBA, chair, internal medicine in the SSOM and interim senior vice president, Clinical Affairs at LUHS.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists discover key protein that helps cancer cells evade CAR T cell therapy