Reintroducing normal microbial diversity can eliminate VRE from intestinal tracts

Too much antibiotic can decimate the normal intestinal microbiota, which may never recover its former diversity. That, in turn, renders the GI tract vulnerable to being colonized by pathogens. Now researchers from Memorial Sloan-Kettering Cancer Center, New York, NY, and Centro Superior de Investigaci-n en Salud P-blica, Valencia, Spain, show that reintroducing normal microbial diversity largely eliminated vancomycin-resistant enterococci (VRE) from the intestinal tracts of mice. The investigators showed further that the findings may apply to humans. The research is published in the March 2013 issue of the journal Infection and Immunity.

The reduced diversity of microbiota wrought by antibiotics "allow[s] VRE to invade and thrive in the intestine, suggesting that bacterial species that are wiped out by antibiotics are key to preventing colonization by VRE," says first author Carles Ubeda of the Centro Superior de Investigacion en Salud Publica, Valencia, Spain. "We hypothesized that repopulating the mice' intestines with the missing bacteria would promote clearance of the VRE."

In the study, the researchers treated mice with antibiotics. They then gave the mice fecal transplants from untreated mice, or aerobic or anaerobic cultures from the fecal transplants. Following the latter treatments, mice receiving the fecal transplant or the anaerobic culture were able to clear the VRE, while those receiving the aerobic culture failed to do so. The researchers compared the microbiota in each group. The big difference: the mice that had cleared the VRE contained bacteria from the anaerobic genus, Barnesiella, while those that had failed to clear the VRE did not.

The researchers then analyzed the fecal microbiota from human patients who had received bone marrow transplants, who were at high risk of being colonized by vancomycin-resistant enterococci. "The presence of Barnesiella in fecal samples was associated with protection against VRE, suggesting that in humans, Barnesiella may also confer protection against dense VRE colonization," says Ubeda.

"The findings could be very useful for development of novel probiotics," says Ubeda. Additionally, "scientifically, this is a major finding that will help us to understand how the microbiota confer resistance against intestinal colonization by pathogens, an important question that remains incompletely answered."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI technique helps neurosurgeons detect hidden cancer during brain tumor surgery