Research sheds new light on role of ATRX mutations in brain and pituitary

Research from Western University and Lawson Health Research Institute sheds new light on a gene called ATRX and its function in the brain and pituitary. Children born with ATRX syndrome have cognitive defects and developmental abnormalities. ATRX mutations have also been linked to brain tumors. Dr. Nathalie B-rub-, PhD, and her colleagues found mice developed without the ATRX gene had problems in in the forebrain, the part of the brain associated with learning and memory, and in the anterior pituitary which has a direct effect on body growth and metabolism. The mice, unexpectedly, also displayed shortened lifespan, cataracts, heart enlargement, reduced bone density, hypoglycemia; in short, many of the symptoms associated with aging. The research is published in the Journal of Clinical Investigation.

Ashley Watson, a PhD candidate working in the B-rub- lab and the first author on the paper, discovered the loss of ATRX caused DNA damage especially at the ends of chromosomes which are called telomeres. She investigated further and discovered the damage is due to problems during DNA replication, which is required before the onset of cell division. Basically, the ATRX protein was needed to help replicate the telomere.

Working with Frank Beier of the Department of Physiology and Pharmacology at Western's Schulich School of Medicine & Dentistry, the researchers made another discovery. "Mice that developed without ATRX were small at birth and failed to thrive, and when we looked at the skeleton of these mice, we found very low bone mineralization. This is another feature found in mouse models of premature aging," says B-rub-, an associate professor in the Departments of Biochemistry and Paediatrics at Schulich Medicine & Dentistry, and a scientist in the Molecular Genetics Program at the Children's Health Research Institute within Lawson. "We found the loss of ATRX increases DNA damage locally in the forebrain and anterior pituitary, resulting in systemic defects similar to those seen in aging."

The researchers say the lack of ATRX in the anterior pituitary caused problems with the thyroid, resulting in low levels of a hormone called insulin-like growth factor-one (IGF-1) in the blood. There are theories that low IGF-1 can deplete stores of stem cells in the body, and B-rub- says that's one of the explanations for the premature aging.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
BMI's influence on disease pathogenesis uncovered in new research