Scientists discover molecular switch that determines death or survival of cell

The study is the result of a collaboration of scientists at Karolinska Institutet in Sweden, University of Michigan, and University of California San Diego, USA, who were interested in finding out whether autophagy can be affected by events in the cell nucleus. Surprisingly, they discovered that a signal chain in the nucleus serves as a kind of molecular switch that determines whether the cell dies or survives.

Put simply autophagy is a process whereby the cell consumes parts of itself, and is a way for it to clean up abnormal lumps of proteins and rid itself of damaged organelles (the cell's 'organs') by breaking them down. The cell also uses the process when stressed by external circumstances, such as starvation, to keep itself alive until better times. So while autophagy can protect the cell, it can also lead to its death. However, just how the choice between life and death is controlled has remained a mystery.

Autophagy is involved in numerous diseases, such as cancer, diabetes, obesity, cardiovascular disease, chronic inflammations, Alzheimer's and Parkinson's diseases, as well as in physiological adaptation to exercise, the development of the immune system and ageing.

"Given the role of autophagy in human disease, all we have to do is select a disease model and test whether there's anything to be gained from influencing the new signal network that we've identified," says Dr Bertrand Joseph at Karolinska Institutet's Department of Oncology-Pathology, who headed the study.

To date, autophagy has mainly been considered a process in the cell's cytoplasm; the present study can completely overturn this view since the results indicate that events in the cell nucleus play an essential part in controlling the process once it has started. The DNA in the cell nucleus is packed around so-called histone proteins, on which different enzymes can attach acetyl groups. Such histone modification is a type of epigenetic regulation, which can influence gene expression without changing the DNA sequence. The modification of histones is a dynamic process, since some enzymes add the acetyl groups and other enzymes remove them.

The researchers studied how the outcome of the autophagy was affected by the acetylation of histone H4, and found that during the processes the acetylation of H4 decreased, which led to a reduction in the expression of autophagy-related genes. If this specific histone modification was blocked, the autophagic cells died.

"Our findings open up avenues for influencing autophagy," says Dr Joseph.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nutrient metabolism regulates T cell exhaustion and therapy potential