Research suggests Huntington's disease might begin in synapses

The synapses in the brain act as key communication points between approximately one hundred billion neurons. They form a complex network connecting various centres in the brain through electrical impulses. New research from Lund University suggests that it is precisely here, in the synapses, that Huntington's disease might begin.

The researchers at Lund University looked into the brains of mice with real-time imaging methods, following some of the very first stages of the disease through advanced microscopes. What they discovered was an unprecedented degradation of synaptic activity. Long before the well documented nerve cell death, synapses that are important for communication between brain centres that control memory and learning begin to wither. This process has never been mapped before and could be an important step towards understanding the serious non-motor symptoms that affect Huntington patients long before the movement disorders start to show.

"With the naked eye, we have now been able to follow the step by step events when these synapses start to break down. If we are to halt or reverse this process in the future, it is necessary to understand exactly what happens in the initial phase of the disease. Now we know more", says Professor Jia-Yi Li,

the research group leader. Huntington's disease has long been characterized by the involuntary writhing movements faced by patients. But in fact, Huntington's has a very broad and highly individual symptomatology. Depression, memory loss and sleep disorders are all common early on in the disease.

"Many patients testify that these symptoms affect quality of life significantly more than the involuntary jerky movements. Therefore, it is extremely important that we achieve progress in this field of research. Our goal now is to find new therapies that can increase the lifespan of these synapses and maintain their vital function", explains postdoc Reena, who lead the imaging experiments.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Patient-derived organoids: Transforming cancer research and personalized medicine