Reduced SMG1 protein expression may contribute to neurological disorders

TGen-led study links lack of SMG1 to protein aggregates associated with Parkinson's disease, forms of dementia and multiple systems atrophy

The absence of a protein called SMG1 could be a contributing factor in the development of Parkinson's disease and other related neurological disorders, according to a study led by the Translational Genomics Research Institute (TGen).

The study screened 711 human kinases (key regulators of cellular functions) and 206 phosphatases (key regulators of metabolic processes) to determine which might have the greatest relationship to the aggregation of a protein known as alpha-synuclein, which has been previously implicated in Parkinson's disease. Previous studies have shown that hyperphosphorylation of the α-synuclein protein on serine 129 is related to this aggregation.

"Identifying the kinases and phosphates that regulate this critical phosphorylation event may ultimately prove beneficial in the development of new drugs that could prevent synuclein dysfunction and toxicity in Parkinson's disease and other synucleinopathies," said Dr. Travis Dunckley, a TGen Assistant Professor and senior author of the study.

Synucleinopathies are neurodegenerative disorders characterized by aggregates of α-synuclein protein. They include Parkinson's, various forms of dementia and multiple systems atrophy (MSA).

The study - SMG1 Identified as a Regulator of Parkinson's disease-associated alpha-Synuclein Through siRNA Screening - was published today in the journal PLOS ONE.

By using the latest in genomic technologies, Dr. Dunckley and collaborators found that expression of the protein SMG1 was "significantly reduced" in tissue samples of patients with Parkinson's and dementia.

"These results suggest that reduced SMG1 expression may be a contributor to α-synuclein pathology in these diseases," Dr. Dunckley said.

TGen collaborators in this study included researchers from Banner Sun Health Institute and Mayo Clinic Scottsdale.

Source: The Translational Genomics Research Institute

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Linker histones found to regulate DNA transcription in apple cells