Dormant prostate cancer cells within bone tissue can be reawakened to a cancerous state

Dormant prostate cancer cells in bone tissue can be reawakened to cause secondary tumours, according to new research published in Endocrine-Related Cancer. Targeting the wake-up call could prevent metastasis and improve prostate cancer survival rates.

Metastasis is the spread of cancer from one organ to another and is a highly complex process, involving cancer cells breaking away from a primary tumour, travelling to a distant organ and colonising it. Cancer cells that fail to form a tumour in the newly-encountered tissue can fall into a dormant state.

Researchers from the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute in California found that dormant prostate cancer cells within bone tissue can be reawakened to a cancerous state when exposed to RANKL, a molecule commonly produced in inflammatory cells. This reawakening can lead to metastatic prostate cancer in bone tissue.

Produced by prostate cancer cells, RANKL is a signalling molecule that has been previously linked with human prostate cancer survival. In this study, researchers engineered a clinically relevant prostate cancer cell line to overproduce RANKL. They found that these cells could significantly alter the gene expression of surrounding cells in vitro, causing them to transform into aggressive cancer cells.

Researchers then injected engineered RANKL cells directly into the blood circulation of mice, which caused dormant cells within the skeleton to re-awaken, ultimately creating tumours within the bone. When the RANKL receptor was blocked, these tumours did not form.

After examination, these tumours were found to contain both the RANKL-overproducing prostate cancer cells, as well as the dormant cells, which had been transformed to become cancerous. Remarkably, the transformed cells displayed aggressive traits that would make them resistant to the normal hormone therapies used to treat prostate cancer.

The findings are preliminary as the study used prostate cancer cells that had been engineered to overproduce RANKL. The next step is to see if other cells known to produce RANKL may also be able to recruit dormant cells to colonise bone tissue.

"We are currently embarking into clinical research with human patients," said lead researcher and postdoctoral fellow Chia-Yi (Gina) Chu, PhD. "Though more work must be done to understand how RANKL reprograms dormant cells to become cancerous, we look forward to examining its influence on promoting metastasis and secondary tumours."

Each year, a quarter of a million men die from prostate cancer worldwide. Bones are the most common site of prostate cancer metastases and are typically lethal in 72 percent of cases based on a five year survival rate. "If we can prevent prostate cancer metastasis to bone we would significantly enhance patient quality of life and increase survival rates," added Chu.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New test predicts lung cancer survival better than current standards