Northwestern Medicine study provides new insights on tissue scarring in scleroderma

A discovery by Northwestern Medicine scientists could lead to potential new treatments for breaking the cycle of tissue scarring in people with scleroderma.

Fibrosis, or scarring, is a hallmark of the disease, and progressive tightening of the skin and lungs can lead to serious organ damage and, in some cases, death.

The concept for new therapeutic options centers on findings made by Swati Bhattacharyya, PhD, research assistant professor in Medicine-Rheumatology, who identified the role that a specific protein plays in promoting fibrosis.

"Our results show how a damage-associated protein called fibronectin (FnEDA) might trigger immune responses that convert normal tissue repair into chronic fibrosis in people with scleroderma," Bhattacharyya said. "We also found that FnEDA, which is undetectable in healthy adults, was markedly increased in the skin biopsies of patients with scleroderma."

The study was published April 16 in Science Translational Medicine.

Scleroderma remains a disease with high mortality and no effective treatment. The factors responsible for fibrosis in scleroderma are largely unknown. Working with John Varga, MD, John and Nancy Hughes Distinguished Professor of Rheumatology and director of the Northwestern Scleroderma Program, Bhattacharyya and colleagues previously showed that innate immunity is persistently activated in scleroderma patients.

To investigate the connection between immunity and fibrosis in scleroderma, the scientists looked at skin biopsies of scleroderma patients to identify factors responsible for persistent scarring. They discovered that FnEDA was highly elevated.

To test the theory that FnEDA was needed for the scarring to occur, Bhattacharyya used a genetically engineered mouse lacking the protein and discovered these mice did not develop skin fibrosis.

On a cellular level, FnEDA triggered an immune response in skin cells, leading to fibrosis. Moreover a small molecule which specifically blocks the cellular immune response triggered by FnEDA was able to prevent skin fibrosis in mice.

While the current study focused on scleroderma, the mechanisms uncovered might also underlie more common forms of fibrosis, such as pulmonary fibrosis and liver cirrhosis.

"This pioneering study using state of the art experimental approaches is the first to identify an innate immune pathway for scleroderma fibrosis," Dr. Varga said. "We expect that the results will shift our thinking about the disease, and hopefully open new avenues for its treatment."

"We have raised the possibility for developing novel therapeutic approaches," Bhattacharyya said. "We are also developing novel small molecules to selectively block the receptor for FnEDA as a potential anti-fibrotic therapy in humans."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
FDA strengthens AI regulation to ensure patient safety and innovation in healthcare