New, high-throughput method can sort 10 billion bacterial cells in 30 minutes

New method could have direct applications for biomedical research and environmental science

University of Hawaii at Manoa College of Engineering mechanical engineer Yi Zuo has developed a new, high-throughput method for sorting cells capable of separating 10 billion bacterial cells in 30 minutes.

The finding has already proven useful for studying bacterial cells and microalgae, and could one day have direct applications for biomedical research and environmental science-basically any field in which a large quantity of microbial samples need to be processed.

The new method was described in a September 2014 publication in the scientific journal Analytical Chemistry, "Surface free energy activated high-throughput cell sorting."

Almost all of today's previously existing cell-sorting methods rely on what is called a single-cell analysis platform. These methods sort cells by running each individual cell through a kind of gateway that nabs out the ones that embody a single, defined physical property. Such methods can be designed to sort cells by size or to identify cells that display a targeted feature, such as a fluorescent dye that has been added.

Zuo's method is different. It is a bulk method that sorts different cell populations by tuning their solubility.

"It has no apparent limitations in sorting throughput," said Zuo, who came up with the original idea while teaching a UH Manoa graduate level mechanical engineering class, ME650 Surface Phenomena. "We can separate 10 billion bacterial cells within 30 minutes."

The new method relies on a measurement principle that sorts cells by differentiating their characteristic surface free energies.

For liquid surfaces, surface free energy is equal to surface tension. But for solid surfaces, such as the surface of cells, surface free energy cannot be measured directly. Instead, surface free energy for solids was previously estimated using a contact angle measurement with complicated theoretical interpretations.

"Although plausible, this principle was very hard to implement," Zuo said. "Compared to other cell properties, such as size and deformability, it is technically challenging to determine their surface free energy. Only recently we developed a novel spectrophotometric method for directly determining the surface free energy of live cells. Based on this technological advance, we are able to implement the principle of surface free energy-activated cell sorting."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough discovery opens doors for targeting adhesion GPCRs with drugs