Research findings cast new light on biological process that can lead to diabetes

Oklahoma Medical Research Foundation scientists have pinpointed a cell that begins the process of scarring in fatty tissue. The findings cast new light on a biological process that occurs with obesity and can lead to diabetes.

"Scarring can be an important part of the healing process when a person suffers an injury," said OMRF's Lorin Olson, Ph.D., who led the research. "But excessive scarring, or fibrosis, can contribute to many dangerous health conditions."

The new research appears in the June 1 issue of the journal Genes & Development.

Using experimental models, Olson and his team found that by stimulating a particular growth factor (known as platelet-derived growth factor, or PDGF) that occurs naturally in the body, they could cause certain undifferentiated cells to develop into scar tissue. But when the researchers didn't activate the growth factor, those cells continued on their normal fate and became fat cells.

Injured or stressed tissues produce PDGF, which stimulates wound repair. However, too much of the growth factor leads to scar tissue, so the body needs a balance of PDGF activity for proper tissue repair.

Fibrosis can also be an early event in the disease process leading to diabetes, which, according to the American Diabetes Association, affects nearly 30 million Americans.

"When fat cells are surrounded by scar tissue, it inhibits their ability to store lipids," said Olson. "When that happens, the lipids are stored in places like the liver or muscle. That can cause insulin resistance, which can lead to diabetes."

In future studies, Olson will examine the PDGF pathway and how it disrupts the fate of the fat cells. "By studying the molecular mechanisms involved in the process, we'll try to understand the role it may play in heart disease, diabetes and other metabolic disorders."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Genetic and environmental drivers shape early type 1 diabetes risk in children