Virginia Tech experts explore new strategy to eradicate harmful viruses

With the outbreak of viruses like Zika, chikungunya, and dengue on the rise, public health officials are desperate to stop transmission.

Virginia Tech experts explore one way -- through the genetic engineering of mosquitoes to maleness -- in the Feb. 17 issue of the journal Trends in Parasitology.

In the paper, the researchers discuss how recent breakthroughs in CRISPR-Cas9 gene editing technology coupled with their discovery last year of a male sex determining gene Nix could be a winning combination for tipping the male-female mosquito ratio in the wild.

Male mosquitoes are harmless because they feed only on nectar; female mosquitoes need to feed on blood in order to produce eggs, and are solely responsible for disease transmission.

In the lab, Virginia Tech researchers have proven that adding Nix in female mosquito embryos could initiate male development.

"We are testing the hypothesis that insertion of key male determining genes such as Nix into the genome of female mosquitoes could produce fertile or sterile males or simply female lethality, all of which will result in less females," said Zhijian "Jake" Tu, a professor of biochemistry in the College of Agriculture and Life Sciences, co-author of the study and a Fralin Life Science Institute affiliate.

The next step, researchers said, is to understand how this technology might be useful in the wild.

"Combining Nix with CRISPR-Cas9 technology could really help us complete goals set and not reached by previous campaigns to eradicate Aedes aegypti mosquitoes, by driving maleness into wild populations," said Zach Adelman, an associate professor of entomology in the College of Agriculture and Life Sciences and co-author of the paper.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover key genes linked to DCIS progression