Kobe University researchers develop new technique for high-level genome editing operation

A team involving Kobe University researchers has succeeded in developing 'Target-AID', a genome editing technique that does not cleave the DNA. The technique offers, through high-level editing operation, a method to address the existing issues of genome editing. It is expected that the technique will be applied to gene therapy in the future in addition to providing a powerful tool for breeding useful organisms and conducting disease and drug-discovery research. The findings were published online in Science on August 5 (Japan Standard Time).

The team consists of Project Associate Professor NISHIDA Keiji and Professor KONDO Akihiko (Graduate School of Science, Technology and Innovation, Kobe University) as well as Associate Professor YACHIE Nozomu (Synthetic Biology Division, Research Center for Advanced Science and Technology, the University of Tokyo) and Professor HARA Kiyotaka (Department of Environmental Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka).

Genome editing - which can directly manipulate the genome information of various organisms without leaving an artificial strand - has seen rapid progress in recent years and it is gradually becoming a revolutionary tool in fields ranging from life sciences to advanced medical research.

Known to be highly effective, genome editing using 'artificial nuclease' aims to cut the DNA at the target point and to modify the gene while it is repaired. As this method is efficacious in biological materials for which genetic operation was difficult, it has been used mainly for higher eukaryotes such as animals and plants.

However, a major issue with this method has been the uncertainty of inducing the intended mutation and 'cytotoxicity' caused by splitting of chromosomes.

In the present research, researchers demonstrated that it is possible to modify genetic function by inducing target 'point mutation' at a highly efficient rate. The point mutation was induced by forming a synthetic complex through removal of nuclease activity from the CRISPR system - a technique using artificial nuclease - and addition of deaminase, a deaminizing (base-modifying) enzyme, and then expressing it in yeasts and mammalian cells. Moreover, it was confirmed that, compared to previous nuclease models, cytotoxicity is significantly reduced by modifying the DNA without cutting.

The present technique can realize a more diverse, higher-level genome editing operation as it can efficiently conduct intended modification in a way that does not put significant burden on the cells. It is expected that the new technique will be applied to gene therapy in the future in addition to providing a powerful tool for breeding useful organisms and conducting disease and drug-discovery research.

Source: Kobe University

Comments

  1. Paul Jans Paul Jans United States says:

    So what if people walk into a McDonalds through opening the door touching the door handle and sit down and eat their burger using their hands?
    Or inside an aircraft touch the seat belt lock and then eat the bread served by the flight attendants?
    And so on...

    Actually our immune system probably would be poorly working if we lived in a too sterile environment and that ain't good either.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Epigenetic silencing of BEND4 unveils new path for PDAC treatment