New study examines print quality of different composite 3D-printed bone scaffolds

A new study of bone formation from stem cells seeded on 3D-printed bioactive scaffolds combined with different mineral additives showed that some of the scaffold mineral composites induced bone-forming activity better than others. The properties and potential to use these bioactive scaffolds in bone regeneration applications are discussed in an article published in Tissue Engineering, Part A, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineering website until March 13, 2017.

Ethan Nyberg, Alexandra Rindone, Amir Dorafshar, and Warren Grayson, Johns Hopkins University School of Medicine and Johns Hopkins University, Baltimore, MD, examined the print quality of several different composite 3D-printed bone scaffolds. In the article entitled "Comparison of 3D-Printed Poly-ε-caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix," they report on the mechanical and structural properties of the various porous scaffolds, to which they added adipose-derived stem cells. The researchers then assessed the bone-inducing properties of each hybrid scaffold, measuring osteoblast formation, calcium content, and collagen expression.

"In the continuum of materials used to regenerate bone, harnessing the power of both biomaterial scaffolds and known crystalline bone regeneration materials provides maximal flexibility in therapy," says Tissue Engineering Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
NIH funding supports investigation of skeletal stem cells in craniofacial bone disorders