Researchers discover new pathway that may play key role in kidney transplant rejection

Researchers have identified a new pathway that likely plays an important role in rejection following kidney transplantation. The findings, which appear in an upcoming issue of the Journal of the American Society of Nephrology (JASN), point to a promising strategy to help protect the health of recipients and the function of transplanted organs.

Fibrosis, or tissue scarring, is a significant contributor to organ loss after transplantation. Inflammatory immune cells are associated with fibrosis in transplanted kidneys, but how these cells contribute to this damaging response is not clearly understood.

When a team led by Hui Yao Lan MD, PhD (The Chinese University of Hong Kong) and Jiang Hua Chen, MD (Zhejiang University) examined biopsy specimens from patients experiencing kidney rejection, the researchers found that certain immune cells were transforming into connective tissue cells, which produce collagen and other fibers. The extent of this so-called macrophage-to-myofibroblast transition correlated with the severity of fibrosis and with the transplanted kidney's function.

"In this study, we discovered that inflammatory macrophages are an important cell capable of driving the process from acute kidney inflammation to chronic kidney fibrosis during allograft rejection via a new pathway called the macrophage-to-myofibroblast transition," said Dr. Lan.

The macrophage-to-myofibroblast transition was also apparent in mouse transplant models and was mediated through what's known as the TGF-/Smad3 signaling pathway. "These findings suggest that specifically targeting alterative macrophages or the TGF-/Smad3 pathway may help prevent or treat tissue scarring," said Dr. Chen.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
NIH grants $2.6 million to explore the effects of high blood-pressure drugs in CKD patients