New study shows how activation of innate immunity promotes tissue regeneration

Houston Methodist researchers have identified an immune pathway that promotes the formation of a cell that can develop into new tissues and organs.

In a new study published in the journal Stem Cells (online March 9), a team led by John P. Cooke, M.D., Ph.D., chair of Cardiovascular Sciences, Houston Methodist Research Institute, described how activation of innate immunity enhances nuclear reprogramming, one of the first steps in tissue regeneration, or the formation of new tissues and organs from a single cell in the body.

"We found that activating the innate immune system opens up the DNA," said Cooke, the study's senior author. "This open state enhances the formation of induced pluripotent stem cells (iPSCs) or cells that can have the ability to regenerate into other cell types and tissues, such as that of the brain, heart or liver."

The use of iPSCs to generate tissues would revolutionize transplantation, facilitating the growth of artificial organs. Cellular nuclear reprogramming is a powerful tool that enables researchers to direct a skin cell to become another type of tissue or organ. Cooke's team plans to use the activation of innate immunity to regenerate damaged tissues to improve wound healing or recovery after a heart attack.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Decoding the genetic roots of stroke and heart attack