‘Nanokicking’ technology allows scientists to grow 3D mineralized bone tissue

Researchers from the Universities of Glasgow, Strathclyde, the West of Scotland and Galway have grown three-dimensional samples of mineralized bone from human mesenchymal stem cells for the first time without typical osteoinductive media. The research, published in Nature Biomedical Engineering, is the latest advance in a technique known as ‘Nanokicking’, and is an essential first step in the potential culture of cellularized bone grafts.

The technique - developed by a team including Matthew Dalby, Professor of Cell Engineering at the University of Glasgow, and Stuart Reid, Professor of Biomedical Engineering at the University of Strathclyde - uses a Nanokick bioreactor to stimulate the differentiation of mesenchymal stem cells by subjecting them to ultra-precise, nanoscale vibrations. The researchers used Nanokicking on mesenchymal stem cells suspended inside collagen gels to produce a ‘bone putty’ which has the potential to be used to heal bone fractures and fill bone where there is a gap.

Bone is the second most grafted tissue after blood and is used in reconstructive, maxillofacial and orthopaedic surgeries. Currently, only limited amounts of a patient’s own bone tissue can be harvested for use in grafting, and bone from other donors is likely to be rejected by the body. By using a patients’ mesenchymal stem cells to grow bone tissue grafts, surgeons will be able to prevent the problem of rejection, and can bridge larger gaps in bone.

Professor Dalby said:

This is an exciting step forward for our Nanokicking technology and we believe that combining this bone putty with mechanically strong scaffolds will allow us to address large bone deficits in patients in the future. Our hope is to be able to begin human trials in around three years from now.

Mesenchymal stem cells have the potential to differentiate into numerous other cell types in addition to osteoblasts and Nanokick bioreactors are currently being further tested in a network of laboratories across the UK. The researchers expect that other clinically-relevant applications of nanokicking will be discovered in these partner labs in the future.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Specialized bone marrow niches reveal secrets of immune tolerance