Breakthrough discovery could radically change approach to treating Klebsiella infections

Researchers at Queen's University Belfast together with the University of Vienna have discovered that treatment for the antibiotic-resistant bacteria Klebsiella pneumoniae could lie within our bodies' natural defenses.

Multidrug resistance of microbes poses a serious global threat to human health. Globally, 700,000 people die every year due to antimicrobial resistance.

The bacteria Klebsiella pneumoniae causes a number of infections including sepsis, urinary tract infections and pneumonia. As Klebsiella becomes more resistant to antibiotics, these common infections are becoming increasingly difficult to treat, which has led to the World Health Organisation recently declaring an urgent need for new therapeutics to be discovered for Klebsiella.

Professor Jose Bengoechea from the Wellcome-Wolfson Institute for Experimental Medicine at Queen's University Belfast and one of the lead researchers explains: "Klebsiella pneumoniae is of particular concern as it can cause infections such as bladder infections and pneumonia and has mortality rates of 25-60 percent. Antibiotics that were previously used to treat these infections are no longer effective meaning treatment options for common illnesses are becoming increasingly limited."

However, a recent discovery by researchers at Queen's University and the University of Vienna could radically change the approach to treating this common infection. The research findings, published in the high profile journal PlosPathogens, show that interferons, naturally produced in our bodies, are fighting back against the bacterial Klebsiella infection.

Professor Bengoechea explains: "Interferons are well known weapons found within our bodies that fight against infections caused by viruses. This pre-clinical study has found that interferons are being produced to fight against the infection caused by Klebsiella, which is fast becoming resistant to treatment by antibiotics."

The research has discovered how immune cells arriving at the site of infection communicate and join forces to eradicate Klebsiella during lung infections. The study suggests that future therapies of severe Klebsiella infections could target the immune system, rather than the pathogen itself.

Professor Bengoechea added: "These findings indicate that we can focus on therapy that manipulates interferons to fight Klebsiella, maximising our bodies' natural resources to treat disease and reducing the need to use antibiotics for these infections. Further investigations are needed but these are encouraging results and open new avenues of research to fight this killer infection. "

This timely discovery coincides with the World Health Organization's (WHO) 'Antibiotic Awareness Week' (13 - 19 November 2017), during which WHO are raising awareness of the dangers of the global threat of antibiotic resistance, to avoid a return to a time before the discovery of antibiotics when infectious diseases were the main cause of mortality.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
A prospective study of antibiotic use and clinical factors in patients with suspected pneumonia