CRISPR-like gene editing could be potential way to treat patients with harmful blood lipid levels

Using a variation of CRISPR gene editing may be a potential strategy for mimicking the protective effects of a genetic mutation linked to lower cholesterol levels and heart disease risks, according to new mouse research from the Perelman School of Medicine at the University of Pennsylvania published this week in Circulation.

People with naturally occurring mutations that cause a loss of function in the gene for ANGPTL3 have reduced blood triglycerides, LDL cholesterol, and risk of coronary heart disease, with no apparent detrimental consequences to their health. This makes the ANGPTL3 protein an attractive target for new heart disease drugs. Earlier studies at Penn found that single copies of inactivating mutations in ANGPTL3 are found in about one in every 250 people of European heritage; however, people with mutations in both copies of the gene are more rare.

A team led by Kiran Musunuru, MD, PhD, MPH, an associate professor of Cardiovascular Medicine, assessed in a mouse model whether base editing - a variation of CRISPR genome editing that does not require breaks in the double-strand of DNA - might be used in humans one day to introduce mutations into ANGPTL3 to reduce blood lipid levels.

"This proof-of-principle study showed that base-editing of ANGPTL3 is a potential way to permanently treat patients with harmful blood lipid levels," Musunuru said. "It would be especially useful in patients with a rare condition called homozygous familial hypercholesterolemia, which causes sky-high cholesterol levels and dramatically increased risk of heart attack. They are very difficult to treat with today's medications, and a one-time CRISPR 'vaccination' might be ready to use in these patients within five years."

The study took a three-part approach. First, the team injected normal mice with the base-editing treatment for the Angptl3 gene. After a week, sequencing of the Angptl3 target site in liver samples from the mice revealed a median 35 percent editing rate in the target gene and no off-target mutations. In addition, the mean levels of blood lipids were significantly lower in the treated mice by up to 30 percent compared to untreated mice.

Second, the researchers compared mice with the modified Angptl3 gene to those injected with a base-editing treatment for another liver gene, Pcsk9, for plasma cholesterol and triglycerides. After a week, Angptl3 targeting caused a similar reduction in cholesterol but a much greater decline in triglycerides compared to targeting Pcsk9. The PCSK9 protein is the target of currently available medications, including evinacumab, which has been shown to reduce cholesterol (but not triglycerides) as well as the risk of heart attack and stroke.

Third, they looked at how base editing of the Angptl3 gene performed in a mouse model of homozygous familial hypercholesterolemia (in which knocking out Pcsk9 had little effect). After two weeks, the treated mice showed substantially reduced triglycerides (56 percent) and cholesterol (51 percent) compared to untreated mice.

Musunuru's lab is now preparing to test CRISPR-based treatments against the human ANGPTL3 gene in human liver cells transplanted into mice. This will provide important information on efficacy and safety that will be needed before human trials can move forward.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough pig kidney transplant ends dialysis for Alabama woman