Scientists develop new method to speed up genome evolution of baker's yeast

Scientists have created a new way of speeding up the genome evolution of baker's yeast Saccharomyces cerevisiae, the same yeast people use for bread and beer production, to develop a synthetic yeast strain that can be transformed on demand for use in various industrial applications.

A research team led by Prof. DAI Junbiao at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences, in collaboration with Prof. Patrick Cai from the Manchester Institute of Biotechnology, developed a "rapid, efficient and universal" way of transforming yeast at the molecular level using a method called SCRaMbLE (Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution).

This system allows researchers to "reshuffle the deck of cards" for the genome, and customize new yeast strains that can recombine on demand with each other to generate novel genome combinations not found in nature before.

Yeast is a very well understood organism and in a biological sense humans and yeast share a number of similarities in their genetic makeup. Therefore, re-building the yeast genome from the ground up helps us better understand the basis of human life.

"Essentially, we can fast-track the engineering cycle. Usually it would take years to optimize yeast strains for industrial applications, but with SCRaMbLE it could take just two or three days. When you can couple engineering with evolution, you have a very powerful tool in hand," said Prof. Cai.

The SCRaMBLE system not only allows researchers to integrate pathways into the synthetic yeast genome, but the yeast itself can also be evolved to become a better host under stress conditions, providing a unique opportunity for it to evolve, adapt to challenges and perform in extreme conditions, such as extreme temperatures and toxic environments.

This makes it particularly attractive for industrial biotechnology applications, such as the production of advanced medicines. This could have massive implications for the future study of DNA and the mass production of new medicines to treat illnesses such as malaria and tuberculosis (TB).

"One of the most exciting developments in industrial biotechnology is the synergy between synthetic biology and metabolic engineering that is enabling us to produce fuels, novel medicines and high value chemicals, nutrition supplements, anti-tumor molecules and antibiotics," said Prof. Cai. "I hope that the technology we have developed here will go some way to speeding up the process for the bio-manufacture of these important products."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers unlock method for mass producing herbal medicine in yeast