Using Nanomechanical Testing to Understand the Mechanical Efficiency of Biomaterials

Thought LeadersDr Igor ZlotnikovGroup Leader "Multiscale Analysis"
Center for Molecuar and Cellular Bioengineering
Technische Universität Dresden

An interview conducted with Dr Igor Zlotnikov, conducted by Jake Wilkinson, MSc

Why are you interested in the mechanical properties of biological materials?

Biological materials exhibit superior mechanical properties relative to their weight when compared to the majority of all man-made materials. In addition to this, organisms can construct these materials using a very limited palette. The exceptional properties of biological materials are a result of intricate architectures that have nanoscale features. We, as scientists, would like to understand these structures and reproduce these materials.

©  Kateryna Kon/Shutterstock.com

What techniques do you use alongside nanoindentation?

For mechanical analysis, we mostly use nanoindentation alongside a range of other techniques, which are also possible using a Hysitron system. We also perform experiments using the mapping and dynamic mechanical analysis. We have also been using the recently introduced environmental control stage, which allows us to perform nanomechanical tests under a controlled environment, which is extremely important for biological tissue. Biological tissue should be tested in an environment similar to its natural habitat, it does not make sense to test its performance when it is embedded in plastic and dried out.

For this reason, we perform many characterizations under a controlled environment, with specific attention to relative humidity. Additionally, many of the structures are extremely small which is why we use mapping techniques.  

How are you using nanomechanical testing to study biological materials?

The most basic form of materials nano-characterisation is based on the measurement of the material’s Young’s modulus and hardness. This is not enough for biological materials, as a large function of their behaviour is based on viscoelasticity.

Visoelastic responses can’t be measured using a static technique, which is where the dynamic analyses that we use come in useful.

Have you been doing any studies on the formation of tissue?

This is another aspect of my lab. We focus both on the nanomechanical characterization of biological structures and also on the study of biomineralization. Here, we are trying to understand how living tissue can form mineralized architectures.

How do you expect this research to impact the field of biomimetics?

I am mostly involved in fundamental research, determining how biological materials behave and how they are created, as opposed to creating the materials themselves. However, fundamental research has a big impact.

Biomimetics is an extremely multi-disciplinary field. It involves drawing together knowledge from chemistry, biology, materials science and physics. In order to develop an understanding of how hard, biological tissue is formed, all of these fields need to be considered. The biology of the cells that form the structure, the chemistry of the mineralisation reactions, and the mechanical properties of the resulting structure all need to be known.

Biomimetics is a bridge between materials science and bio-engineering, and knowledge flows in both directions. State-of-the-art techniques from materials science are used to understand how biological structures are formed and how they perform, and then this information is applied into the design of synthetic materials.

Are we close to creating biomimetic structures with similar properties to the ones that we see in the real world?

This is a difficult question to answer. We can already create, in some ways, similar structures but we cannot make them economically. It is expensive and requires a lot of effort.

Conversely, in the natural world, a shell structure can be formed without having to apply any pressure, and at ambient temperature. We still don’t know exactly how this is achieved by nature, but we do know that it uses a ‘bottom-up’ approach, which means the shell is built from scratch.

We can form synthetic shell-like materials but we have to take a different approach that involves a lot of expensive technology, and the material is not produced in a large scale. So, whilst we can produce truly biomimetic structures, we cannot yet make them at the scale that nature does so effortlessly, which is prohibitively expensive

What equipment do you use in your research?

We use the Hysitron TI-950 system in our lab, this also has the dynamic analysis add-on, which allows us to make the mapping tests. We have a humidity chamber so we can control humidity and temperature during our measurements. In addition, we also have the PicoIndenter-85. Those are the main toys we play around with.

The humidity chamber in particular was crucial for our research as, when testing biological materials, it’s important to stay at biologically relevant conditions. We developed the humidity chamber with Hysitron four years ago. I was working in Potsdam, when we had the idea of constructing the chamber and contacted Hysitron. We did the first experiment on the proto-type, which was successful, and the machine became commercially available two years later.

About Dr Igor Zlotnikov

Dr. Igor Zlotnikov received his PhD in Materials Science and Engineering from Technion – Israel Institute of Technology. He then worked as a Postdoctoral Fellow and, subsequently, as an Independent Researcher at the Department of Biomaterials, Max Planck Institute of Colloids and Interfaces.

Currently, he is leading the group “Multiscale Analysis” in B CUBE - Center for Molecular Bioengineering, TU Dresden. His research focuses on the fundamental question of how nature takes advantage of thermodynamic principles to generate complex morphologies and on the interplay between physics of materials and cellular control in this process.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Bruker Nano Surfaces and Metrology. (2023, April 10). Using Nanomechanical Testing to Understand the Mechanical Efficiency of Biomaterials. News-Medical. Retrieved on December 22, 2024 from https://www.news-medical.net/news/20180608/Using-Nanomechanical-Testing-to-Understand-the-Mechanical-Efficiency-of-Biomaterials.aspx.

  • MLA

    Bruker Nano Surfaces and Metrology. "Using Nanomechanical Testing to Understand the Mechanical Efficiency of Biomaterials". News-Medical. 22 December 2024. <https://www.news-medical.net/news/20180608/Using-Nanomechanical-Testing-to-Understand-the-Mechanical-Efficiency-of-Biomaterials.aspx>.

  • Chicago

    Bruker Nano Surfaces and Metrology. "Using Nanomechanical Testing to Understand the Mechanical Efficiency of Biomaterials". News-Medical. https://www.news-medical.net/news/20180608/Using-Nanomechanical-Testing-to-Understand-the-Mechanical-Efficiency-of-Biomaterials.aspx. (accessed December 22, 2024).

  • Harvard

    Bruker Nano Surfaces and Metrology. 2023. Using Nanomechanical Testing to Understand the Mechanical Efficiency of Biomaterials. News-Medical, viewed 22 December 2024, https://www.news-medical.net/news/20180608/Using-Nanomechanical-Testing-to-Understand-the-Mechanical-Efficiency-of-Biomaterials.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Bruker introduces Ultima Investigator Plus — Multiphoton microscope for tissue imaging